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FOREWORD

The Supercomputer Debugging Workshop *91 (SD *91) was held the week prior to
Supercemputing *91, and focused upon toplcs relating to debugger construction and
usage in the Supercomputer programming environment. The workshop brought
together debugger developers and users to discuss topics and experiences of mutual
interest, and established a basis for future collaborations.

The objective of the workshop was to promote a free and open exchange of
information between an Interdisciplinary group of debugger developers and users

from the commercial and academic communities, thereby advancing the state-of-
the-art of debugger technology.

Program Chair:

Jeff Brown, Los Alamos National Laboratory

Local Arrangements:

Denlise Dalmas, Los Alamos National Laboratory

Program Committee:

Bruce Kelly, NERSC

Alan Riddie, NERSC

Peter Rigsbee, Cray Research
Larry Streepy, Corvex

Rich Title, Thinking Machines
Ben Young, Cray Computer

Keynote Speaker:

Ken Kennedy, Rice University
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S. Chaumette, Universite Bordeaux-I
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DEBUGGING AND THE TERAFLOP COMPUTER

Ken Kennedy

Center for Research on Parallel Computation
Rice University
Houston, Texas

ABSTRACT
November 26, 1991

In a very real sense, the debugger is the inverse of a compiler, because its job is to interpret the
execution of the compiled program in a language close to the programming language in which the
original program is expressed. The state of the art is “source-level” debugging in which the debug-
ger uses the compiler symbol table to interpret an execution in the source language.

The quest for a teraflop machine will introduce new machine designs and corresponding compiler
complexities that will significantly complicate the job of the debugger. The teraflop machine is
almost certain to be a highly parallel machine (thousands of processors) in which each processor is
a sophisticated commodity microprocessor. With the advent of 64-bit addressing, in microproces-
sors, these machines are likely to have hardware shared memory, although they will be packaged
like distributed-memory machines.

The compilers for parallel machines will introduce enormous complexities for the debugger hecause
they will employ sophis ated transformations to enhance single-processor scheduling. parallelism
and mimory hierarchy age. Compilera are also likely to employ interprocedural optimizations.

As a result of these developments, future debuggers will be presented with three major challenges:

1. reconstruction of program state in the presence of advanced optimizations,
2. location of achedule-dependencies (date races) in explicitly parallel programs and,

3. analysis and visualization of performance in highly optimized parallel programs employing
thousands of processors,
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ABSTRACT

The Prism programming environment is a graphical environment 10 suppon the
developmem of Connection Machine programs. This paper discusses the design and
implementation of Prism.

1. Goals of Prism

We sct out a linle over a year ago to build 8 Connection Machine programming environment meeling
the following goals:

Make Connection Machine programmers more productive,

Suppon all Connection Machine programming models.

Pro /ine a well-integrated set of 1ols.

Be easy 1o use.

Provide an sitractive graphical interface that would demo well.

The environment should support multiple targets, ¢.g.. both CM2 and CMS.

The work needed to be donc on a fast schedule W have the environment ready in ume for
the CMS announcement
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2. Overview of Prism

In the initial release of Prism we focused on the problems of debuzging, performance analysis, and daia
visualization. We felt that by doing an excellent job in those arzas we would provide the most benefit
to users of the Connection Machine supercomputer. Prism deals with the other aspects of program
devclopment by providing interfaces 10 independent Lools such as editors, the "make” utility, and online
documentation.

In the design of Prism, much emphasis was placed on providing an easy-to-use, intuitive, and attractive
interface. Prism provides a poini-andclick graphical imerface, based on OSF/Motif. The design and
implementation of the user interface is described in section 3.

Prism's debugging feaues include all the feawres of siandard debuggers such as dbx, but in a graphi-
cal seiting. In addition, Prism functionality gocs beyond dbx in a number of ways. This will be
described in dewail in section 4.

Data-parallel programming usually involves the manipulation of large arrays, so the ability 10 visualize
these arrays is imponant in a Connection Machine debugging environmentL Section 6 describes Prism’s
data visualization capabilities.

Prism's performance-analysis features enable the user 1o find out where and how the program is spend-
ing its ume. Prism goes beyond standard profilers such as 'prof” and "gprof in a number of ways: (1)
Performance data is broken down according to what Connection Machine or front-end resource is being
used, and (2) the resolution goes down 1o the source-line level. The performance analysis [eatures are
described in seclion 7.

At this point the rcader may want to refer to figure 1, which shows a screen with some windows from
the Prism environment. In the center is the main window, with the op-level pulldown menus, the
source window, and the commands arca. Surrounding that are various optional pop-up windows: A help
window in the upper left, a couple of visualizers into the armay "a" in the lower left, and some perfor-
mance hislograms on the right.
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3. User Interface

Prism’s user interface runs under the X Window System and is based on the Motil widget set. The
interface was designed W be easy o leam, and once learned, fast and efficient 10 use. These are the
two key criteria that definc the ease-of-use of any sysiem.

Pull-down menus, butions, and dialog boxes make most of the functionality of Prism easily and obvi-
ously available o the user. The appearance of dialog boxes is standardized as much as possible to
increase user familiarity with the interface. For example, most dialogs have apply. close, and help but-
tons. Standard keyboard accelerators can activate the close ar help buttons in any dialog at the ouch of
a key.

A comprehensive online-help sysiem provides nicely-formaned documentation on all aspects of using
Prism. In addition, coniext-sensitive help is available in all dialogs and pull-down menus, via a help
button in the former and a help menu option in the latter. Finally, integration of Thinking Machines’
WAIS text retrieval software into Prism provides users with a powerful capability for online searching
of the entire Connection Machine documentation set, using relevance-feedback techniques.

Prism provides a number of shoricuts thal increase the speed of use of the interface. Pull-down menu
items may be copied w the iear-off region, where they become buttons that perform the same action.
For some users, 8 command line interface may be used more rapidly than a graphical one, 50 com-
mands can be typed in a text region that mainuwains a history of commands and Prism output. A number
of actions that apply o program entities, such as printing a variable or listing a function, can be rapidly
performed by interacting with the source region, which displays the source code for the current function
or file. The user selects some lext in the region and then chooses a popup-menu option W apply to the
selected entity. These same oplions are accessible through the main menu with more guidance given 10
the user, bul at a cost of additional mouse gestures and keystrokes.

Lastly, Prism allows intesesting and useful graphical interactions with some of the underlying debugger
funcuonality. The Where, File, and Function dialogs display lists of siack frames (i.e., function invoca-
tions), available source files, and available functions, respectively, If the user clicks on any list item,
the source region displays the source code for that item, and if the item is in the Where or Funcuion list,
the default scope for variable lookups is set 1o the chosen function. Prism Evenis (sce below) may be
created and modified using the Event Table dialog, whicn allows compleie gencrality in specifying
event descriptions.



4. Debugging of data-paralle]l programs

The data-parallel languages for the Connection Machine include CM FORTRAN and C*. These are
extensions of the FORTRAN and C languages which provide for the manipulation of arrays in parallel.
Since these languages siill have a single control flow, it is relatively straightforward to extend exisling
debugging paradigms (such as what dbx provides) o progams written in these languages. Therefore,
we chose dbx as the base for Prism’s debugging features. The rest of this section describes the exten-
sions we made 10 tum dbx into a debugper for Connection Machine programs.

First of all, Prism needed 10 be taught w iewch parallel data from the Connection Machine. This
mechanism is based on calling runtime routines via the "call" command mechanism. In this way, Prism
can get at paruliel CM FORTRAN arrays or C* parallel variables.

Secondly, dbx's expression parser was extended 10 handle CM FORTRAN (FORTRAN 90) expressions
and C* expressions. The resulis of these expressions can be printed out in the command window or fed
1o one of Prism's visualizers (see section 6). This ability of the debugger 0 interpret expressions in our
languages has proved valuable.

Thought had 10 be given 1o how best to provide graphical interfaces to standard debugger functionality.
The source window (see figure 1) is the backbone of Prism: 1t provides visibility into the current source
position, and provides the ability w0 set breakpoints and print variables. In additional, optiunal pop-up
windows provide Lhe functionality of commands such as "func", "file", and "where" (see figure 2).
These windows interact in the nawral ways. For example. clicking on a function in the "Func" window
will re-position the source window Lo the stan of that function.

Another area where dbx's capabilities were extended is in Prism's “"event table”. The idea is to general-
ize and enhance the dbx "stop...", “trace...", "when ...", and "display ..." capabilities. A Prism “event”
consists of a trigger condition, and actions to be performed. Examples of trigger conditions: whenever
the program reaches a cenain point (siandard breakpoints), whenever a condition becomes true (“stop if
..."), or whenever the value of a variable changes ("stop <var> .."). Aclions can he arbirary Prism
commands, such as “print”. For example, by selling up an event that triggers on every line, whose
action is 10 update a visualizer for the array "x", it is possible to waich the array "x" change as the pro-
grar 1 runs. Figure 3 shows the event table.

§. MIMD-Parallel debugging

With the advent of the CMS, we can now support another progmemming model on the Connection
Muchine: Multiple threads of control with explicily message passing between them. This programming
model is supponed by the CMS operuting system and its CMMD message-passing library.

Prism currently supports this programming model by offering an intcrfuce to the new Pndbx debugger.
Prism can pop up a window running Pndbx. Prism remains acuve and can be used on the front-end
portion of the user program, while the Pndbx debugger provides visibility and control of what is going
on in the Processor Nodes.

A full description of Pndbx is outside the scope of this paper, but bricfly, the idea is to provide dbx-like
debugging into any of processor nodes. The user can switch his debugging context amongst the nodes.
Cupabilities arc also provided for iterating any command across all nodes or sets of nodes (e.g., "where
all"). Pndbx provides these capabilities with o dbx-lhike command interfice.

For the future, we are looking into the following: (1) Providing a more graphical interfice o the Pndbx
functionality, (2) Closer integration of Pndbx and Prism, und (3) Investigating alicrnate parsdigens for
MIMD puarullel dcbugging. This cnure arca is a frmittul one for turther rescarch.
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6. Data Visualization

Prism currently provides a tightly-integraied capability for the visualization of parallel and serial data.
A separaie window, called a visualizer, may be created for each variable or expression Lo be visualized.
Visualizers give the user an efficient means lo navigate through and interpret the large amounts of data
tnat are typically found in massively parallel programs.

Visualizers are designed to view multi-dimensional arrays of data. Any variable or expression of type
array may be viewed, whether the dala resides on the CM, the front end, or some combination thereof.
The visualizer displays one section of a two-dimensional slice of daia, and the user may pan around in
this slice using simple graphical gestures. A ruler may be enabled which shows the coordinaies of the
array elements at the four comers of the visualizer window. For higher-dimensional data, sliders are
provided for varying the coordinates of axes thai are orthogonal 1 the displayed slice. Assignments of
array axes to the sliders and the two window dimensions are shown by small text fields which can be
edited 1o change the displayed layout.

Daia may be displayed in visualizers using one of several pre-defined graphical represeniations, which
may be freely changed afier a visualizer is created. Textual, colored pixel, and boolean pixel represen-
tations are currently available. For a iextual visualizer, the ASCII representation of each array element
is printed in the window. Though this may seem litle different from the dbx print command, the data
navigation capabilities offered by Prism make visualization using lext vastly superior to dumping a
polentially huge array 0 a terminal.

The pixel representations display one erray element per pixel. A boolean pixel visualizer maps ele-
ments to black or white based on comparison to a threshold value, while a colored pixel visualizer takes
the range of daia and discretizes it Lo bt either a default speciral colormap or a colormap provided by
the user. Because the pixel representations give an inexact indication of the value of each array ele-
ment, Prism provides a point-and-click operation 10 query the value of any pixel.

Figure 4 shows a lexwal visualizer into a 2-dimensional array "a".

The builtin visualizers provided by Prism give the user fast and cffeclive means 1o view data. In the
future, Prism will be also able 1o export data to external visualization sysiems such as AVS.
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7. Performance Analysis

While dauw-parallel programs share important characieristics with their sequential counterparts, i.e.,
sequential or pseudo-parallel control flow, their ambitious performance goals, combined with the added
complexity of inter-processor communication and large daia sets, make comprehensive performance
tools an absolute necessity.

In Prism, we have begun 10 implement such a suite of performance analysis tools. Our initial work
focuses on providing Connection Machine users with an understanding of where and how their pro-
grams arc spending their time. Per-procedure and per-source-line graphical displays are available for
the utilization of the majar resources (e.g., processor nodes, inler-processor communications network,
mass-storage devices) of Connection Machine sysiems. Furthermore, these displays are available for
each node in a program's dynamic call-graph. The displays are designed so thai the user can easily
ideatify the most heavily utilized resource, and, by navigating about the call-graph by simply pointing
and clicking, home in on the places in the source code that are the major contribulors (0 that utilization.
Figure 5 shows some of Prism's performance histograms.

We feel that providing integrated profiling of a program’s use of all the resources available to it
represents gn important advance over profiling tools that provide information about processor utilization
only. It is imponant that performance analysis tools permit the user Lo easily undersiand where the lev-
erage is; this is not possible without an understanding of a program’s usage of all parts of the comput-
ing system that can contribute 10 delay.

8. Summary
This section summarizes how we achieved the various goals of the project:
8. The OSF/Mouf and X-windows based interface provides ease of use and an auractive
appearance.
b. By basing Prism on existing sofiware such as dbx we were able w get it up and running
quickly.

c. By isolating target-dependent things in runtime routines (e.g.. fetching actual dawa from the
Conneclion Machinc), vie were able 10 easily retarget Prisin. In fact, the same Prism execut-
able works for both CM<'s and CMS's.

d. By uckling problems that arc difficull on supercomputcrs (debugging, performance
analysis) we were able 10 provide a truly useful tool.
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Abstiact

The state-of-the-art in optimizing compiler technology has
increased rapidly over the years — a pace that debugger
technology has not been able 10 match. Convex’s newest
ofTering in debugger Lechnology. CXdb, synchronizes the
two technologies. CXdb is a full-featured debugger that
provides the developer capabilities to debug optimized
code. It provides a sophisticated user interface for effec-
tive communication of debugging information and a rich
command set enabling the user to easily work with the
application being debugged. CXdb’s unders.anding of
compilcr optimizations are based on an innovauve set of
information emitted by the compiler, the Compiler-Debug-
ger Interface (CD1). CXdb aiso derives compiler-synthe-
sizcd variable values at run-lime.

1.0 Introduction

This paper describes:
¢ The motivation behind CXdb's development.

* The data contained within the CDI and how it is used
to understand the program being debugged.

e low the Graphical User Interface enhances the usei.
understanding of the progrum stte.

¢ Features of the command language specifically aimed
at handling optimized code.

This paper closes with comments on possible future direc-
tions for CXdb functionality.

1.1 Motivation

The state-of-the-art in optimizing compilers has beei
steadily advancing over the past several years. Cuirent
compilation technology can provide automatic scalar, vec-
tor, and parallel optimizations on an application [Conv90]
[Conv91a) [Lu91) and [Sark90). However, the corre-
sponding art of debugging technology has not been keep-
ing pace. Typical current-day debuggers require that the
application be compiled with optimizations disabled.

Bceing able 10 debug with optimizations enabled has sev-
eral distinct advaniages. The following list presents some
of these advantages.

1, Applications typically run several times faster when
optimized. The longer it takes the progrum 1o exhibit
a bug, the longer the developer will have to wait until
the actual task of debuyging can begin. This
lengthens the overall time-to-solution. When
debugging optimized code, the length of cach edit-
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compile-debug cycle is reduced in direct relationship
with the speedups provided by those optimizations.

2. Certain classes of bugs may exhibit themselves only
when optimizations are applied. Therefore, having to
debug only the non-oplimized code may prevent you
from ever finding the bug. For example, arithmetic
optimizations may alter the convergence behavior of
an algorithm.

3. Compiler developers are also debugger users. For the
compiler devcloper id W ablc to debug compiler
components that afTect optimizations, the debugger
has to be able 10 handle the object code in its
optimized form. Without this support the developer is
forced into the *ediousness of working at the
instruction level.

4. Performance debugging. Bad performance can be
considercd a “bug” just like a logic error. It is
essential to debug the code as optimized 1o determine
what additional optimizations to make.

5. Support for production codes. Developers will be
able 10 work with customers in the field using the
optimized application. Core files submitted by
customers car: ue operated on dircctly.

The resull of these restrictions and problems is that the
developer is placed under a considerable handicap when
rying to develop. debug, and tune optimized applications.
CXdb was developed with the solution of these problems
as onc of its major design goals. The remaining sections of
this paper provide a tour of the various features of CXdb
and duscribe how they help developers work with opti-
mizcd code.

1.2 Existing Research

Most of the current rescarch in debugger support of opti-
mized code has been focused on hiding the effects of the
optimizations from the developer, {Henn82], {WaSr85]
(Zc1183], [Zc11B4], [CoMcBB], and {Zura%(]. The objective
of their research is to present the user with expected
behavior. Although this approach works with specific
classes of optimizations, it becoines intractable when you
consider thit optimiza.ons are cascaded, merged, and
applicd muliiple times in various orders.

1L isn’t clear that all optimizations can be made transpar-
ent. To maintain the transparency of the optimizations
cach optimization must be reevaluated cach time it is

revised or a new oplimization is added. This leads to
exceusive maintenance in the debugger o keep it in synch
with the compiler. Such maintenance costs are unaccept-
able in today’s extremely competitive market

CXdb was developed to address compiler optimizations by
depicting what is actually happening. CXdb uses visual
feedback to present the effects of the optimizations on a
program’s behavior.

1.3 Types of Optimization

Many optimizations can be spplied during the compilation
process. These optimizations can be divided into three
major categories: scalar, vector, and parallel [Conv90]
[Conv91a). The technology of automatic scalar and vector
optimization is well advanced. The science of automatic
parallel optimization is comparatively new. Table 1 pre-
sents a sample of the optimizations that fall within these
categories.

Table 1. Optimizations by Category

Catsgory | Optimization

o e e s

span-dependent instructions

global register allocation

tres-height reduction

redundani-assignment elimination

assignment substitution
common-subexpression elimination
redundani-use elimination

onnstant propagstion end folding

algebraic and trigonometric simplification
dead-code elimination

hoisting and sinking scalar and array references
©Opy propagation

code motion

strength reduction

stnp mining

loop distribution

loop interchange

paired hoist and sink
conditional induction variables
loop distnibution

Pmallel atrip-mining

variable vector strip-mining
scalar spreaaing and reduction
(plus combinations with vector optimizations)
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2.0 The Compiler-Debugger Interface

One of the limiting factors in current UNIX debuggers,
such as gdb, sdb, ...J dbx, is the mechanism that transmits
compile-time information to the debugger. All of these
debuggers use a STAB! based approach (o retrieve com-
piler-produced debugging information (cavear: The adb
debugger is based on a set of debugging daia, known as
DWAREF, that is currently undergoing a standardization
effort). The limitations of STAB- or DWARF-ba -d imple-
mentations in supporting optimized code debugging are
summarized as follows:

¢ Synuaxctic granularity. The view of the source code pro-
vided is restricied w basic blocks and staiements. This
granularity is too coarse o handle optimizations which
often opcrate at the expression level (which encom-
passes most scalar optimizations). Additionally, the
view is purely lextual; not syntactic.

e \Vanable value location. Under optimization the value
of a variable may migrat: between scveral machine
locauions (memory, register, nowhere). There is no
method of encoding this information within the STAB
mechanisms.

* Mapping source code and objuct locations. The STAB
mcchanism only supports a 1:1 mapping from source
lines to object code. Optimizati:ns can replicate or
fuse object code segments in ways thal require a many-
tc-many (M:N) mapping of source code to object code.

With these hmatattons and the requirements of handling
optimized code in mind, an entircly new mechanism was
developed. This new compiler-debugger interface (CDI) i5
represented by a sct of compiler-created data files.

The Convex compilers are composed of language-specific
front-ends and a common back-end. The front-ends per-
form the lexical and semantic analysis of the compilation
process. The back-end impiements optimization and code
generation Each module (front-end or back-end) is
responsible for gencrating a portion of the CDI. The front.
cnd gencrated data files correspond to eath primary source
file The back-end gencrated data files correspond to each
ohycot file produced The components of the CDI are pre-

i STAR (Symbo! TABle) infformation includes name. type, and
location for sanables amd aldre s ranges for sousce salements

sented in the following sections. Table 2 presents a brief
overview of the data tues and their contents.

Tabt- 2 CDI Data File Overview
Compller
Compoaest Data Flie | Generation

ce ] execulable
[ Section Table execiuable | back-end
ame Space 218 front-end
Information Asi front-end
Source Unit Table sul front-end
Sowce Range 1able s back-end
[ Variable Table vt back <nd
';ﬁlnge Teble In back-end
—Epminn Table Apt back -end

2.1 From-end Components

2.1.1 Namespace

Each namespace daua file (NS) conuins the op-level sym-
bols defined within the source file. Usually thesc symbols
are visible across the entire program. In C, top-lcvel sym-
bols consist of exiernal identifiers. In Fortran, they consist
of subroutine, funcuon, and common-binck names.

The NS conlains the partial language namespice contnb-
uted by the source {ile. The union of all the partial
namespaces comprises the language namespace for the
application being debugged. In programs written in mulu-
ple languages. the debugger maintains onc language
namespace for each source language. The namespaces
provide a mapping from symbol names to source files
This mapping provides support (or dynamic 'cading ol
debugger data files,

2.1.2 Source Unit Table

The source unit table (SUT) contains the encoding lor the
source unit trees resulting from the input source file A
source unif is an abstructed, language independent picee ol
the progam. A file's source units form a tee that reflecis
t.e synwx of the program. Source units are ¢lassibied into
groups depending on the type of linguistic construct trom
which they are derived. The currently supported source

CXdb A New View On Optimizstion
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unit typ:s, also called granularities, are listed in Table 3.

Table 3. Source Unkt Granularities
Grapularity Description
L':-.'x;ulmm 1 my W
operaiors. and operands in the current
source language
Suiement any valid staiemnent in the current
source language
Block stalements that constitute the body of &
routine, loop, or conditional construct
Loop an ilerative construct (examples: foz,
while, DO)
Routine & main routine, subrouline, or funcuion

Each SUT entry contrins the following information:

index Unique integer index within .sut file

kind Granularity of souzce unit, sec Table 3
pasition Swart and end source positions

scope node Refcrence o scope node, see descriptior of

scope nodes below

The source units are formed into trees based on the lexical
nesting of their source positions. The source unit tree is
used to contrel the highlighting of program text by the

Figure 1.

Example of source Lnns ni Fortran

user interface. Figure 1 shows examples of the different
types of source units in a Fortran routine.

" *3 Type and Scope Information

'ype/scope information (TSI) data file contains the
cacoding for the type descriptors, scope nodcs, scope
entrics, and scope blocks for the compilation unit. Each
front end produces the following information:

e A scope eniry for each user-defined symbol. Scope
entries are used 1o model the different symbol Lypes
that can appear in the program’s lexical environment.
<urrently. there are five scope entry types: variable
entries (including routines), rype ensries (C typede(’s),
ype iag entries (for structs and unions), common block
entries (Fortran common blocks), and enumeration
eniries (enumeration literals).

A scope node tree that reflects the scope of the symbols
in the source code. The scope nodes form the backbone
of the lexical scoping environment. Scope nodes pro-
vide different levels of lexical visibility. Scope entries
on the sanie scope node have the same visibility.

A scope block tree that reflects the block structure of
the source code.. Scope blocks are used to specify arbi-
trary program symbols from any point within a pro-
gram. For example, to reference statics or common
block variabl=s. To reference a program symbol in
another branch of the scope environment, the dcbuggcr

= RFAL*4

Routine Block

ENDDO

- END

—» SUBROUTINE ABC

[—-—* DO I =
—& B(I)

DO I =
é:'zau)
Statements PRINT 99,

99 FORMAT

A(100),
1, 100

=1 +[Z]<
-[SQRrT(B(1))]

100

B(100), C(100)

Expressions

1, _
- n(n +[c(n]
I = I,

“
’

“A(I)

“, A(1)

(A, 13, 5X, A, FB8.4)
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uses scope blocks to navigate through the scope envi-
ronment. Scope blocks provide a means for referring 10
scope levels (nodes) by name. Scope blocks are linked
downward to all immediately nested scope blocks. A
path through the scope environment is spe~‘fied as a
sequence of scope block names from an outermost
scope block down 1o the desired scope block.

The layout of the TS file is more complicated than other
dala files and deserves a litle more atention. Figure 2 pre-
sents the general structure of the TSI file.

Figure2. TSI file layout

Debugger _
Header
TSI header
type info
scope inlo —

Scope
Information

rr— - r.-—

Information

The debugger header is 8 standard header, which all
dchugger data files conwin. It conwins size and version
information verifics the data file was created by a version
of the compiler compatible with the exccuting version of
CXdb. The TS/ header contains information describing the
numbecr of entrics in the sections that {ollow, as well as
pointers (offscts) to the start of the other sections in the
filc,

The scope information consists of n serics of scope entrics,
scope nodes, and scope blocks as described above. The
type information consists of a serics of type descriptors
thut are indeacd by scope entrics. All user-defined data
types arc defined in this data file.

2.2 Beack-end Components

The compiler back-end creates data files to represent the
layoul of object code corresponding to input source code.
These data files include information on:

o Variable attributes (user and compiler-synthesized)
¢ Object-code to source-code mappings

e Mcmory Isyout of sections within the object file

e Ephcmenal variable locations

o Synthesized variuble expressions

Each back-end generaled data file is described below.

2.2.1 Expression Table

The expression table (XPT) encodes information for han-
dling compiler-synthesized variables. The compuler gencr-
ates synthesized variables as either a replacement for a
user-definzd variable (called a derived synthesized vari-
able) or a mechanism for runtime support (called a runtime
synthesized variable). The variable is synthesized so that
either optimizations or code generation may proceed with
less difficulty.

For a derived synthesized variable, the wses of the old vari-
able are replaced with more efficient uses of a dcrived
variable. Sometimes, all uses of the old variable arc
replaced and the old variable does not physically exist.
The new variable value is expressed as a linear function of
the variables from which it was derived. For examplc, the
user may have the following coac:

while( X[i++]) != 0 )

Rathcr than incrementing i, multiplying it times the size
of an element of x, and then adding it to the base address
of x, the compiler optimizes this code by replacing i with
a variable that is compile-time computable and increments
the variable (call it 21£00) by sizaof (x[0]) on cuch
iteration, The resultant variable is derived from the follow-
ing linear equation based on the original variable |.

?2ifoo = £X + (} * slzeof (x[0])}

By mainwining the linrar cquations that define o synihe.
sized variabic, the d=bugger can solve the equation (o |
to derive the current valuc of the variable that has been

CXdb A New View On Optimization
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replaced. In the example above, the value of 1 can be
expressed as:

i = (?24f050 - &x) / sizeof(x[0))

Runtime synthesized variables are created to hold infor-
mation needed -t runtime. They may be created for many
rcasons. Some examples are: tracking vector lengths, cre-
ating vector masks, tracking vector spills, retaining argu-
ment pointers, etc. This type of synthesized variable has a
direct value and, thus, no corresponding linear equation
sct

The XPT contzins the following information for each syn-
thesized variable.

Purpose An indication of the variable’s use (for
example, vector spill area, vector length,
etc.)

Identifier  Variable name

Type Enumecration value indicating the specific
synthesized variable type

VT index Reference to the variable table entry for the
synthesized variable

Fxpresslon Lincar equation encoding for variable

iree derivation (not included for runtime
support variables)

2.2.2 Location Range Table

The location range table (LRT) cncodes information to
track the home location of a variable and the run-time vari-
able-10-location bindings. Possible machine locations are:

s Rcpgisters
o Stack fiame relative (for local variables)
= Register relative (for arguments)

o Segment relative (for swatics and globals)

Variables can have both home location entries (the loca-
ton where the variable resides at throughout program exe-
cution) and ephemeral location cntrics (describing the
vanons run-time Incations).

Each entry in the [.RT contains the fullowing information:

VIindex  Reference o the variable wble cniry

Addr range Start and end instruction addresses in the
executable image over which this entry
holds true

Location  Machine location encoding

Due to optimizations a variable may have multiple over-
lapping entries. Given an execution address (PC) and a
variable, the LRT indicailes which location(s), if eny, arc
associated with that variable, as follows:

(PC, var) = {Loc,;,...,Loc,]

Given a PC and a machine location, the table can also be
used to determine which variable currently resides at that
locauon. The following equation is used when examining
the registers or stack frames to detcrmine associated vari-
ables:
(PC, Loc) = (Vvar)

If no location is bound 1o a variable, the variable is said to
be unavailable. Unavailable variables can occur, for
example, due 10 constant propagation and redundant
assignment elimination.

2.2.3 Section Table

The section table is not encoded within a special data file,
but is encoded within the symbol table of the crcated exc-
cutable. Special STAB entrics encode the following infor-
mation:

Type The section type (TEXT, DATA, cic.)
Address The scction's base address
Object file The object file contributing to this section

Each object file may contrivutc a portion of the teat, daw,
bss, tdata, and tbss sections of the final exccutable. The
table maps virtual addresscs in an executable to relatve
addresscs within a scction of an objcct module. This mip,
along with the NS, TSI, and SFM, control the on-demiind
loading of debugger data files.

2.2.4 Souroe File Map

Like the section table, the source file map (SFM) is
encoded withir the exccutatle. However, it is encaded
directly within the text section of the nbject code pro-
duced. 1t is simply . list of the source file names that pro-
duced the object file.

6 o122
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2.2.5 Source Range Table

The source range table (SRT) encodes information
describing the object code ranges for each source unit. A
source unit, as described in S=ction 2.1.2, is a lexical com-
ponent of the input source code. Without oplimization, a
single source unit will map o a single range of object code
(that is, a single statement may generale a sequence of five
machine instructions). Optimizations destroy this 1:N
mapping. Optimizations merge, split, remove, and repli-
cate the object code associated with the input source units.

The SRT is a two-way, N'M map from source units to
object code (PC) ranges. Each entry in the SRT contains
the following information:

SU index Source unit index

Range Range of object addresses occupied by this
source unit. The addresses are relative to

the beginning of the object file

SFM index Source file map index

Optimi.atons (for example, instruction scheduling) may
crcat: multiple entries for a source unit. Multiple source
uni's may contain the same address because source units
arc nested constructs (that is, a routine may contain loops,
which contain blocks, which contain statements, which
conwin expressions).

The PC-to-SourceUnit mapping. following, determines the
aclive sourcc units at a given program location. It also
determines the current scope because source unils conlain
an index (o a scope node. The user interface uses the active
source unit tree o determine which source code segments
to highlight.
(PC) => {SU,, ..., SU,I

The SourceUnit-to-range mapping, following, determines
the starting addresses of a specific source unit. Without
optimizations, this mapping is typically 1:1 (that is, each
source unit maps o a single range of addresses). However,
when optimizations arc applied, this mapping becomes
1:N. The debugger uscs the starting addresses, or entry
points, for a source unit to determine where o place break-
point instructions for managing slcppingz. breakpoints,
tricepoints, and e ventpoints.

(sU) =9

{Range,, ..., Range,}

2.2.6 Varlable Table

The variable wable (VT) encodes information about all
user-defined and compiler-synthesized variables in an
object module. Variables are divided into two classes that
indicate the extent of the variable. Those variables whose
lifetimes extend across the entire program have indefinire
extent and those whose life is restricied to a particular
scope have definite exsent.

Examples of infinile extent variables are static and exter-
nal variables in C, package-local variables in Ada, and
common block variables in Fortran. Variables of this type
are allocated a home location in global memory. During
program execution these variables may be allocated to
other locations (for example, registers). The location range
table determines the run-time locations for a given vari-
able. See the discussion of the LRT, Section 2.2.2, for
more details.

Finite extent variables, which includes all auromatic vari-
ables in C, have no home location but may still migratc
between machine locations within the extent of their life-
tume as described within the LRT.

Each VT enury conuins the following information:

Type Synthesized or user-defined

Storage Storage class of variable. This is a much

class broader definition than is used in
conjunction with C. Some cxamples are
auto, static, dynamic, register, argument,
section bascd, ctc.

Reference Reference to related variable (for common
blocks, equivalences, and bascd variables)

Flags Flags that define additional attributes of the

vanablc such as row-wisc array, Cray
pointer, dummy argument, compiler
iemporary, Fortran format specifier, clc.

Scupe entry Index to the scope entry defining this
variable. The scope entry contains the type
descriptor for the varisble

2. CXdb unes spccial breakpounts, called rransiens reak ponne,
w control source level atepping. The source unit address tunges
we wed to determine where (o place these tansients. See Seclion
4.2 for mote detals

CXdb A New View On Optimlzation
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3.0 User Interface Components

CXdb uses CX/Motif (Convex's version of the OSF/Motif
toolkit) [OSF91] for its graphical user interface (GUI), and
the Maryland Windows Library [Tor83] for its full-screen
CRT user interface [BuCh91].

Although the CRT interface does not support a direct
pointer device (mouse), pull-down menus, or pop-up win-
dows, it does provide a powerful multi-window environ-
ment that maximizes the use of a CRT's limited screen real
estate. The CRT interface supports the highlighting neces-
sary lo provide program animation as described for the
GUI source window in Section 3.2. With the limitations
notcd, the CRT interface is very similar to the GUI pre-
sented below. It will not be discussed further.

The GUI is composed of several specialized windows used
10 interact with the debugger and the l.argcl:' process. Each
window is introduced briefly in the list below and
described more fully in subsequent sections.

Command All command entry (via the keyboard)

Window is through this window. It contains pull-
down menus for access to the full CXdb
command sct (command composition), and
expert buttons for access 1o cornmonly used
commands (via the mousc).

Source All program source code is viewed from

Window this window. Source units are highlighted

(o indicate program exccution. Source
based cvcmpoims‘ arc indicated by special
icons.

Disassembly Presents an annotated listing of the

Window disassembled object code of the executable.
Addresses arc annotated with the
associated variable name (if known). Pop-
up windows provide access lo the machine
register state. Eventpoints are also
indicated with icons in this window,

Exumine
Window

Prescents the contents of process memory
in @ wide range of uscr-sclectable formats
ranging from binary 1o Fortran complea,

L The term target process will be used interchangeably with
provwesy eing debugged.

4 Lyenipoint s a generic term (on CXdb's execition control
medhaninms ineluding breakpxnnts, wacepoints, watchpoints, elc,

Stack Presents a backtrace of the current stack

Window contents. Point-and-click operations
present detailed information on selected
swack frames.

Process 10  All I/O operations on the process being

Window debugged are isolated within this window.
It provides full CRT emulation.®

Help Provides access to the complete online

Window Reference Guide [Conv91b]. Sophisticated

search capabilities provide easy navigation
between reference pages.

Each of the source, disassembly, examine, and stack win-
dows are created on a per-thread basis. This provides the
user with direct access to individual thread state in a paral-
lel application. Multi-threaded application support in an
integral component of CXdb's design. See Section 4.3 and
4.4 for additiona! information on multiple thread support.

The combination of these specialized windows present a
synergistic interface providing rapid access to program
information and effective control of the target process.
Each of the major GUI components arc described helow,

3.1 Command Window

The command window is the major focal point for control-
ling CXdb’s operation. It provides a scrics of pull-down
menus and buttons providing mousc-bascd access 1o all
CXdb commands. The command window cnables the user
to:

e Enter CXdb commands
e Receive output from CXdb commands

e Receive error messages or status information about
CXdb commands

¢ Review previous commands and retricve them from
the command history

e Control the creation and display of the other windows
within the GUI

3. The CKRT emulation is accomplished by using xterm, an appli
cation sipplied with the X Window System

8 of 22
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Figure 3. Command window components

Window menus Command menus

Info lvom.l I:-oeuuan Process Cm"l.uroum Misc

Cxdo voruon 1.1.0.1 .
(CxXdb

Window number

P "
- -‘__—_]

Comyright "(C) 1991. Convex Computer Corp.

Command buttons Co

and line and prompt

Scroll bars

Figure 3 shows the major components of the command
window.

3.2 Source Window

The source window displays the source: code for the appli-
cation being dcbugged. Scroll-bars and pull-down menus
provide quick access to the source code within the applica-
tion.

The current point of execution is indicated by highlighting
the inncrmost active source units in reverse video (aclive
source units arc determined by the PC and the SRT, sce
Scction 2.2.5). Figure 4 shows the source window contain-
ing a lFortran code fragment where the assignment on line
4G is highlighted, indicating that the assignment is being
performed,

The source window's capabilitics are best described by
cxample. 'The following example shows how highlighting
can convey the exceution behavior of optimized code. In
particular, it demonstrates that o precise understanding of
how the code was optimized can be obwined by repetitive
stepping ot the machine instruction level. The pictures

used in this example were taken from an actual CXdb scs-
sion. Within these pictures, the icon next to line 56,
appearing as a @, is actually an eventpoint icon indicaling
a breakpoint on line 56 (the icon became unrcadable and
shifted toward line 57 when the images were scaled W fit
within this document).

In the presence of optimization, no assumptions can be
made about what hax happened before the current PC or
what will happen afier the current PC. The efTects of opti-
mization are communicated through patterns of high-
lighted source units in a sequence, called program
animation. Consider the following sequence of source
window fragments. A breakpoint has been set on the rou-
tine whose first statcment is on line 56.

[ 1) INFO = 0
“' MMl = -1
1r (W1 .LT. 1) GO TO 70

Nolice that when exccution stops on entry to the routine, it
docs not stop on line 56 but on line 57 indicating that
instruction scheduling hax reordered the computation, The
variable N is highlighted indicating that the first instruc

CXdb A New View On Optimization
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Figure 4.  Source window with source unk annotations

[ Source Window Bourca Unit Process Windows

file: add.f prooceas §([0) thread #[0] Alive

land

Swsament Source Unils

\-Rwl.ine Source Unit Hlock Source Unit

tion of the routine is loading N into a register (the disas-
scmbly window is ¢xtremely uscful when debugging at
this level, see Scction 3.3).

Siepping one muchine instruction results in highlighting
the constant () on the previous line, line 56.

H INI‘O"
® NMl =« N - 1
58 IF (NM1 ,LT. 1) GO TO 70

Likc variablcs, o highlighted constant indicates that the
constant is being loaded into a register. Jumping from an
cXpression in one statement L0 an expression in a subsc-
guent, or cven previous, stitenicnt is typical of instruction
rcordering. The ubove scquence shows that the effects of
reordering cannol be conveyed siatically. but only dynami-
cally through animation of the program’s exccution.

Stepping aguin results in multiple source units being high-
lighted.

. mm
[ 0] 1r (IIH

. 1) G0 TO 70

This indicates that the highlighted cxpressions are equiva-
lent. ‘The use of the varinble NMI in the predicate of the
condhonal 1s equited by the compiler with the deflnition
of NM1 on hine 57 (assighment substitution),

Another siep results in the highlighting of the assignment
to INFO.

=N-1
58 IF (W1 .LT. 1) GO TO 70

This indicates that the value of INFO is being updatcd. In
general, assignments will be highlighted during the com-
putation of the L-value of the assignment® (lefi-hand sidc)
as well as the store, or register transfer, of the assignment.

Stepping again causes the conditional expression on line
58 to be highlightcd.

56 INTO = 0
37° Ml =N - 3
[ ] 1r (ICINAEEED co TO 70

This indicates that the predicaic is about to be evaluated.
Recall that the value of NM1 was highlighted (evaluated)
in a previous step. The second operand, the constant 1, has
not been highlighted indicating tha it is used as un imme-
diate operund (the disassembly window can confinn this),

6. Thia due to compiler idionyncracies; not a specification of the
hghlighting model.
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After the predicate is evaluated, the assignment to NM1
occurs.

Had NM1 not been needed in later computations, the
assignment would have never been highlighted, indicating
that it had been eliminated (dead-code elimination). Elimi-
nated code, such as dead code or redundant assignments,
are conveyed implicidy by never being highlighted (see
Section 5.1 for additional discussion of this lopic).

INFO = O

. 1) @0 T0 70

Finally, the IF statement on line 58 is about (o be executed.

The IF is highlighted at the conditional branch that tests
the result of the predicate. In this case the consequent is a
GOTO, which has been folded into the sense of the condi-
tional branch. When the consequent is taken, the GOTO
will not be highlighted, because control is short circuited
to label 70.

This example illustrates that highlighting in reverse video
can convey the effects of numerous optimizations. How-
ever, it is not sufficient for more involved optimizations
such as hoisting or sinking. See Section 5.1 for potential
solutions 1o some existing highlighting problems.

3.3 Disassembly Window

The disassembly window is the main access point (o the

56 INFO = 0 . . .
87 | machine level debugging features of CXdb. The disassem-
o J bly window provides access 1o the disassembled object
code of the target process. Figure 5 shows an example of
the disassembly window. Each disassembled instruction is
Figure 5. Disassembly Window
Mcnus Window number T 28¢down
Page up
""" LA s ey B | is bly Window
DisessemblyWindow InstructionView RegisterView
7y, pc = Ox8000290a proceas: [00/0Q) Alive [\ 4]
pc>0xB000208a BLD MTRIX+(Oni9a): Jd.w 12(ap) . a2 . 8Licr
Ox0000290¢ BLD/MATRIX+(Ox19e)1 mov a3.a)
Ox80002990 BLY MATRIX+(Ox180)| mul.w 820.a3
OnBO00299d BLP_MATRIXe(Ox1sd4)| add.w 8-1,a% A
OxHOUOZYYY BYU_MATRIX+(OxlaB)1 mul.w aB.al
OxB8000299a D_MNTRIX+(Oxiaa)1 mov 82.a%
O0xB000299c JLD_MATRIX:(Oxlac)i mov eB,ad
O=B800029%¢ LD MATRIXe(Onlee)1 woul.w ad, ad
OnA0002920 / AL D_MGIRIX+ (OxID0) | add.w  a%.al
OnB800029a2/ BLD_MATRIX+(Oxlb2)1 mul.w nq.al
OnBUVLLYS BLU_MATEIX¢(Oxlb4): mov «0.29
0xB00029 BLD_MATRIX: (Oxib6)i mul.w ©100,a%
000002940 DLD_MATRIX¢(Oxlba)| edd.w al,e2
0xB00NZFaL BLD HATRIXs (Oxibe )t  Id.w -4(e2).90
OxBO00IPLO BLD_MATRIX+(Oric0)) sud.w a9.83
OnBUVOFYL? BLU_MATRIX«(Uxicd)| sdd.w &l 84
OnB00F29b4 BLD_MNTRIX4 (Oxicd)t cviw.s ©0,e0
0=B0QD2ULEG BLD_MATRIX+ (Oxichb)! wsub.s 03,8)
OnB0P029LU8 BLD MATRIX+(0r1LB8)1 aud.w w0.8)
OnBgUNZ9Na BL D _MATRIXe(Owira)) at ., w 8).-21471149A0( a4)
ouHo029cO BLD_MATRIN-(OnidO)1 ldea ~bld_matrin_¢(Oxdbc), §6
UnffOD0ZYct BLU_MNTRIXe(Uxlcdb)t calle _lorse_wale
0/D00020cc BLD_MATRIX¢(Oxldc)l ld.w 12(fp). a6
000029u0 DLD_MATRIX«(Oxi@0)| ldea A _bld_metrin_+(Ondcc), 4G
_ N A -
Current program counter Disassembled code Va Inhl‘v name of arpument
or loca _J
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annotated with the name of the referenc2d variable. The
LRT, see Section 2.2.2, maps machine locations to vari-
able names’.

The disassembly window has an operating mode called
auto-update mode. In auto-update mode, the disassembly
window is updated every time the process stops. The
region of object code surrounding the PC is disassembled
and displayed. This mode is most useful when visualizing
program execution as described in Section 3.2.

The target process” complete register swate can be dis-
played through pop-up windows created from the disas-
sembly window'’s pull-down menus. These register pop-
ups are described below.

3.3.1 Reglister Pop-ups

The disassembly window's pull-down menus provide
access 1o pop-up windows displaying the complete register
state of the process being debugged. The following regis-
ter scis can be viewed:

e Scalar registers
e Vector regisiers
¢ Communication registers

e PSW dctail

Whenever the pop-up windows are displayed their con-
tents are kept up to date. When the process stops, the reg-
ister valucs arc calculated and re-displayed. Figre 6
shows an cxample of the scalar register pop-up window.
Similar to the annolations on the disasscmbly window, the
register pop-ups are labeled with variables currently
located within cach register.

3.4 Examine Window

The examine window s another tool . or working below
the source level 1t provides a formatied view onto 8 mem-
ory region, The user conuols the display format with a
pop-up dialog window. The formats available include o

7 CRdbas capable of working with only partial debugging

i dormation (Lt is, when some of te souce files have not heen
compiled for debugging) I such cases, CXdbh may nut be shle w
map e addsess relerence o a varishle name.

Figure 8. Scalar register pop-up window

Scalar Registers

Process [80/0)
pc : 80002958
pew: 03909480
: £fffca20

: 80002bbc

: 800ed02e

: 00N00000
20000008
90047204

: 800ecl00

: ffffcall

: 00003030

: 4a2c4b29

1 41945249

: 20332020

: 3d203120

: 493d2031

¢ 202d322e

:+ 00000000

00000000
3d20202d
5828492¢
00000000
00000000
00000000
00000005
00000004 K

Change: fornat] I

C).Iou

Variable K currently in register S0

choice of word size (from one to 16 bytes) and type. The
possible types are:

® decimal

s unsigned decimal

s hexadecimal

* octal

¢ binary

* characler

* float (fixed and scicntific notation)

s Fortran Log.cal

¢ Fortran Complex

The examine window, like the disassembly window, has
an auto-update mode where its contents are updated cach

12 01 22

CXdb A New View On Optimizatiun



User interface Components

Figure 7.  Examine window
Data format

=~ I b @ & NI

Examinewindow DataView

@® format: (word decimal) process: [#0/0] Alive

range: Ox80058008..0x80058410 - Address

0058008 : 1 2 3 . range
80058018 : 5 6 ? s

80058028 ; 9 10 L 12

80058038 13 14 15 16

80058048 17 18 19 20

80058058 21 22 23 24

80038068 25 26 27 T Data
20058078 29 30 £} 32 values
80058088 N 34 33 ]

50058008 3? s 9 40

$00580a8; 41 42 o “

20058008 45 46 a a8

800580c3: 4% 50 51 $2

$00580a8: S3 54 5% 56

800580e8: $7 58 59 60

800580f8: 61 62 63 64 '
80058108 65 66 67 68

80058114: 69 70 7 72 "
$0058128: 7 74 75 76

80058138 77 78 7 ]

80058143: 81 8? '} “ ,
80058158: 85 86 87 "

80058168: 89 90 9 92

80058178: 93 94 9 96

lime the process stops. With the examine window in auto-
update mode you can watch a segment of process memory,
such as part of an array, change as you step process execu-
tion. Figure 7 shows an example of the examine window.

3.5 Stack Window

The stack window prescnts a symbolic backtrace of the
current program stack contents. The information displayed
is equivalent to thai of the backt race command. It con-
wains an entry for each call frame on the stack. By default,
the stack window is in auto-update mode. Each entry con-
tains the following informetion:

* Frame number

¢ Exccution address at time of cull
¢ Namec of function

¢ Argument namcs and valucs

¢ Symbolic program location

o Current irame indicator

Figure 8 shows an example of the stack window.

The stack window provides point-and-click access to a
pop-up window that displays detailed informaiion aboul
selected stack frames. The pop-up displays the following
information:

¢ Frame address

¢ PC within [rame and symbolic location
¢ Source language of frame

* Argument names and values

o Local variablec names and valucs

Figure 9 shows an example of the frame pop-up window,

3.8 Process /O Window

The process 1O window isolates all the target process® 1/0)
activities. This isolation provides two distinet intetaction

CXdb A New View On Gptimization
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Figure 8.

Stack window

pc = Ox80001644 process: [#0/0] Alive

[ STackwindow Frameview ﬁ|

A

Fcb 0 : Ox80001644 1n MUNGE(A = (INTEGER*"4(1:<TEMPO>, 1:<TEMPL>))
1 : Ox800013ea 1n _MAIN() (mmunge-parallel.f 1ine 13) <%

2 : Ox80001ae0 1n _main(1l, Oxffffcseo, Oxffffcs98)
3 : O0x800010d0 1n ___apSenvret() ‘

Symbolic location

|

!

Current frame PC
indicator

routine

Argumaent values

Figure 9. Frame pop-up window

suldl el
Procesy [£O/0)

Numper of arguments : 7

Frame : 0; [On00001644) WNGT 1n rrunge-paraliel.f Yime 37
Hloating point wode : NATIVE: Language : FORTAAN

Nurper of arguments : 7

! (INTLAR®4) H)?
! Xe (RLAL*4) 4, 0000

1

2

)

41 Ne (INTEUR®4) 1024

y

‘

7:ve (REAI®) 11,0000

Nurer of locals @ 2

1: 1. (INTTGER=¢) 80
1 ) - (INTIATRUY) S

T A INTRGER®A(L:cILMPD, 3:<TENPL)) 0200050008
1 B2 INTLCER*4(L:<TEMPD>, 1:<TEMPL)) Ox8C290008
t Cn INTEGER®4(1:<TTWPO:, 1:«TINPL>) OnBO450008

A

Loca!
Varlables

Arguments

contexts: one for CXdb and another for the target process.
The X window application, xterm, manages this window.
Xterm provides complele CRT emulation allowing the
user to debug applica.ons that do full screen formatting.
The separation of interaction also guarantees that the tar-
get process’ control of the output screen will not be dis-
turbed b: interacting with CXdb. Because this window is
just an xterm, no example of it will be shown.

3.7 Help Window

The help window displays online help text relating to vari-
ous CXdb topics. The help window appears when you use
the he 1p command or press the help expen Sutton on the
command window.

The online help system contains all topics in the CONVEX
CXdb Reference manual [Conv91b). These topics cover
four categorics of information:

¢ Concepts — Explanations of the major topics involved
with using CXdb.

¢ Commands — Descriptions of all the CXdb com-
mands.

o Parameters -— Descriptions of some of the major
commund parameters.

e CXdb messages — Explanations of informational
messages and error messages gencrited by CXdb,

14 of 22
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You can either request help on a listed topic or you can
search the help files 1o locate a particular word or phrase.

Figure 10 shows an example of the help window.

4.0 Command Language Components

CXdb's command language was designed 10 provide a fea-
ture-rich and powerful debugging environment. CXdb's
command environment provides the following features:

* A log of all commands entered (including menu selec-
tions) can be maintained.

¢ The output of a command can be redirected o one or
morc files (when combined with command logging an
entire record of a CXdb session can be created).

Figure 10. Help window

= Eventpoint handlers can be created thai consist of any
sequence of CXdb commands®. When handlers are
combined with output redirection, a user can creale
powerful new features like tracing a variable's value or
recording parameters on each call to a function.

e Cusiomize the command language with command
alinses and macros.

Many of CXdb's commands focus specifically on handling
optimized code. These specialized commands are
described in the following sections.

8. Except cammands that cause process execution, like step. The
resume command can be us..J 1o continue process execution.

HelpWwindow Topices Hintory Searchiptiones

Window numbher

Tople: help

HINGME: relp
ABBR, h
ALIAS ?

Invoke thw CXdb help syatem,

SYNTAX)
relp [<etring))

<atring’
topice, All

DISCRIPIIDN:

A charscter oL: ing used to eearcn for help
tOPLCO containirg the etring are
ﬂll:llu.d. The siring can contain white space
\ being enclosed In quotos,

A

—3

[~ c—

String tq eearch for:

L

e

Kosult of searchi

Tne vopic “help” was found.

Messape indicating result of scarch

Ficld for entering scarch string

Find button Scru'l bars

Text arca
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4.1 Informational Commands

CXdb provides an extensive set of commands that provide
information on the state of CXdb and the target process.
Information may be obtained on the following broad cate-
gories:

e CXdb’s configuration

e Defined eventpoints

¢ Command aliases and macros

e Defined key-bindings

¢ Default signal handling settings

® Process siate

* Process registers

* Process stack

¢ Excculable organizaticn

There are three commands that are specifically aimed at
optimized code handling: info expression; info

line;and info sourceunit. Each of these com-
mands is described below.

4.1.1 info Expression

The info expression command is an extremely vers-
satile command that provides detailed information about a
language expression®, The info expression com-
mand displays the following information about the speci-
ficd language cxpression, when applicable:

Object Type Type of object represcnied by the
expression; one of identifier, expression
result, or debugger variable

Location Current machine location(s) of the variable
Slze ‘Total object size

Type Expression data type

Value Expression's current vslue

9. A language expression is any exjression that is valid in the
current source language context with extensions for using debug-
pet varighles and specifying address ranges and offsets.

Liveness PC ranges and associated machine
locations where the variable's value is
available. Outside these liveness ranges,

the value of the variable is not available.

Synthesized Variables generated by the compiler as
Variables  part of the optimization process that are
derived from the variable

Orientation Armay orientation: row- or column-major

Bounds Array bounds

Entry Entry point for a function

Return type Data type of the value returned by a
function

Prototype The complete ANSI style prototype of a
function

Var Type  Type of object represented by a debugger
variable

The info expression command is the only way 10
determine all of the locations that a variable may occupy
(that is, access (o the LRT) or what synthesized variables
have been derived from il (that is, access to the XPT). Fig-
ure 11 shows an example of an info expression
command’s output that includes variable liveness 1 anges.
Figure 12 shows output that includes derived synthesized
variables.

4.1.2 Info Line and Info Sourceunit

The info lineand info asour: ~,unit commands
provide access 10 the SRT information. The info line
command displays information on all source units that
start on the specified line, while the inf> sourceunit
commands displays the same data on u specific source
unit. The following informaticn is displayed:

e Source unit index

¢ Regions of object code generatcd by this source unit. A
zero region indicates that no object code was gencrate:!
for the source unit.

¢ Source lext row and column positons for the start and
end of the source unit

e Scurce unit kind, sec Table 3, Source Unit Granulari-
tics

e Source unit text extracted from the source file

16 of 22
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Figure 11. Info Expression showing iveness ranges

( (CXdL) disasseuble $PC:1
Disassemb_.as Process [(#0/0] from OxB80003..ea for 1 machine instructions
0x80003cea LEVEL_NO+ (0Ox58): ld.w J,ad

(CXdb) step instruction
Stepping process [#0/*] by 1 instruction

(CXdb) info expression J

object type: Fortran identifier

location: register ajd =>_Vamble J sto

\\‘7 Y. OxBCCS590CC:UxB0C54000 ~ Oni006dciB

Process [#0/0] stopped steppir; at [DxB80003cf0] LEVEL_NO in chapterl5.f line 38

Ox8006dcie in boch locations
size: 4 bytes
type: INTEGER®d Current liveness range
value: 1
7 liveness ranges:
Start End Locat ion
1. Ox800903ecc2:0x80C03cca - register sl
2. Ox80003cf0:0x80003d04 - register a$
J. OxB80003d32:2xB80003d48 - reglaster ad
4. OxB80003d5a:0xB00C3d7a - register al
. Ox80003daa:0x8000)dae ~ registor sC
6. OxB80003dba:0x8CCJ)dc2 - register 0

~

Figure 12. Info expression showing synthesized variables

/ (CXdd) info exrression I
object type: Fort:.- lden:ifier
lecation: <none> e N0 home location
sire: 4 bytes
type: INTEGER®"4
va.ue: 4
used 0 creaie ] synthes:.red variable(s):

1. <INDV> MY e (=AY e (40 (1=1)) 1 :

nduction
.‘. “Nav‘ ?‘6 ’ ?l‘."‘.(x-l') =:> var‘-ablcs
¥, <INDV> M7 = 21218 (1=-3))

A
[N S
68 REAL A(M.N), B(M,N)
69
e DO Jel.N

1 DO ls1.M

L] (EMP = 3.0 = “
3 ACL.J) = TEMP/(Z.0aX)

4 B(1.)) = 2,0 = ThWP

e ENDDO

5 LNLD .
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The output of this command can be used to determine
dcad code (that is, source units that produced no object
codc), and code motion. Figure 13 shows an example of
the info line command.

4.2 Stepping and Granularities

Source units provide a much more detailed undersianding
of the synlactc breakdown of an application’s source code
than is possible with the current STAB mechanism. This
enhanced understanding enables much finer grain control
over incremental program execution.

CXdb extcnds the standard step and next cummands o
opcrate on the granularities listed in Table 3. Siepping by
cach of the granularities provides its own unique advan-
tage. These advantages are listed below.

Block

Expresswn

In many programs the loops are the most
interesting components (especially when
focusing on the oplimizations that apply to
loops). Stepping by loop is an efficient
mechanism for moving from loop to loop.

Once inside a loop, stepping by block
conlinues execution to the next loop
iteration. Outside of a loop, it is a quick
way of stepping Lo the next lexical scope
change.

Stepping by . - ~**meni provides the
standard stepping mechanism that most
debugger users are familiar with. Howevecr,
its usefulness is extremely limited when
working on optimized code.

Stepping by expression is extremely

~

/

Routine Stepping by routine proceeds from routine beneficial when working on optimized
entry 1o routine entry. This is very useful code. Many optimizations occur at the
when debugging unfamiliar code where the expression level.
run-time call sequer:ce is unknown.

Figure 13. Info line example
33 SUBROUTINE LEVIL_NO(M.N. R, 8, X)
34 REAL A(M.N'. B(M.N)
35
B © DO Jo).N
37 DO lsl.M
38 TEMP = 3.0 =» B(I. D)
39 ACI. J) = TEMP/(2,0=X)
40 B(l.J)) = 2.0 » TEMP
4] ENDDO
42 ENDDO
/'(Citd.b) info line 36
MG Addreas loundaties Star? End Kind
Lot R Tty ROLOD e Yo x 1S Yo m 17 <FEXPH- ]
SO0 T R WS T RO00 e i« x 10 o x |3 «STMT» -1
[ T 1A TRODO Jeae W ox 14 e ox 14 <FXPH>» N
A0 0 TRYORCED i RO0C Wed Mox ! 40 x 11 Oaks Do Jet N ... IRDDO
' P ROV Vo OO0 Vg4 wom ! " un v PLOCK - P ow=i, N [ YN
Objet Conde Source Code  Source Unit Source Texd
Range Row x Col Kind
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Typical debuggers, like dbx or gdb, implement stepping by
repeatedly stepping the target process by machine instruc-
tion until it reaches the next statement. This mechanism
works fairly well for statement level stepping, but CXdb
provides multiple stepping granularities. Using an instruc-
tion stepping technique on a command like finish
loop would be infeasible because the number of machine
instructions executed within a loop can be enormous.

To solve this problem, CXdb uses a mechanism called
transient breakpoinis. A transient breakpoint is s break-
point placed by CXdb to implement incremeial execution
commands like step or next. The SRT is used 1o deter-
mine the object code ranges occupicd by a given source
unit (for example, a loop or statement). Transient break-
points are then placed at the first instruction of each object
code range.

Once the transient breakpoints have been placed, the pro-
cess is execuled at normal execution speed. When the tar-
get stops with a breakpoint trap. the step operation is
compicie ', Stepping with wransient breakpoints works
very well for routine, loop, block, and statement granulari-
tics. Howevcer, stepping by expression is implemented
using the siandard machine level stepping approach.
Because of the large number of expression within a rou-
tine, it is impractical to implement with breakpoints.

Because a machine instruction is not considered a granu-
larity (because it isn't a source unit), the step
inst . uction command provides siepping control at
this level. When working on hig, .. uptimized code =tep
inatructionand step expression become two
of the most frequently used commands.

In addition to the suandard st ep and next commands,
CXdb offcry another command, £ inish, that allows you
to step out of @ specificd source unit, For example, assume
cxeculion hus stopped somewhere within a loop and you
want W run until the loop exits, With most debu ggers, you
would have to locate the end of the loop manually and
place a breakpoint there before continuing exccution, With
CXdb, you can simply type £iniash loop and CXdb
will do all the work. Sinnlarly, finish routine
resumes cxecution until the current routine is about to exit,

10 Thivas s greatly sumplihied explanation of the inner workinga
of thix process, but it repreacntative of the mechaim

Note that execution is halied before control returns to the
calling routine. This provides the user the opportunity to
interrogate the program state prior 1o leaving the routine.
The £inish command can be used on any granularity,
but loop and . outine are the most useful.

4.3 Specialized Eventpoints

CXdb's evenipoint mechanism supports the following

capabilities:

Breakpoint Halt program execution when a specified
location is reached.

Tracepoint Print a message when execution reaches a

specified location.

Watchpoint Halt program execution when a specified
memory region is modified.

Relation Halt program execution when a specificd
language expression evaluates to TRUE.
Exec Halt prog. ..n execution when it performs

an exec(2) system call.

In addition o these features, CXdb provides two cvent-
points specifically for handling parallel ontimizations.
They are:

Spawn Halt execution when any new threads of
exccution are created. This detects regions
that have been parallelized.

Join Halt exccution when any thrcad joins (that

is, exits). This declects when a thread has
compleied its portion of a paralicl region,

4.4 MNuftiple Thread Support

CXdb was designed specifically w handle parullel upplica-
tions. Most of the GUI windows are ir stantinted on a per-
thread basis (sce Section 3.0). There wre special event-
pointa for detecting thread creation and death (see Section
4.3). Finally, the command [anguage was built to suppont
multiplc threads in a consistent manikr,

Each command may be prefixed with o command focus. A
command focus specifies the specific process'! and
threads within that pracess 1o be affected by the conenand
For example, the command

(CXdb) :tl,2 step

CXdb A New View On Optimization
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will step orly threads 1 and 2, leaving the other threads at
their current location. The command

(CXdb) :t0,3 backtrace

produces a stack backtrace for both thread 0 and thread 3.
For commands that create eventpoints, specifying a ccm-
mand focus determines which threads will be affected by
the eventpoinL For example, the command

(CXdb) :t0 break routine foo

places a breakpoint at the entry point to the rouiine foo
that will only affect thread 0. Any other thread that
encounters the breakpoint will not be stopped by it. The
default focus is all threads, which is equivalent to :t® in a
focus specification.

5.0 Future Directions

Although CXdb is very full-featured, it is nowhere near
“done”. This section presents a number of areas that may
be pursued as future enhancements of CXdb,

5.1 Enhanced Highiighting Techniques

As shown in previous examples, simple reverse vidco
highlightiny is sufficicnt for many of the scalar optimiza-
tions, However, it can not convey some of the more
involved, loop-oriented oplimizations such as hoisting or
sinking. Also, code removal optimizations (for exaninle,
dead code removal or redundant assignment eliminat.on)
are conveyed implicitly by never highlighting the associ-
ated souree units.

Some possible solutions to these problems are discussed in
the following sections,

5.1.1 Hierarchical Highlighting

Consider the hoisting of invariant code out »f a loop.
Using reverse video, loop invariant code will be high-
highted when the loop becomes active. The highlighting
doces not convey whether the code is inside or cutside the
loop, To convey this, hierarchical highlighting is needed.

11 CXdb's command language was designed with multiple jro
cens aupport i mind Howeser, multy process debugging s not
suppotted in the current release

In one form of hierarchical higlilighting all active source
units, not just the inncrmost source units, would be high-
lighted. This must be done in a way so that nested source
units can be distinguished. Inactive source units are not
highligh.ed. With hierarchicai highlighting, motion out of
loops can be conveyed by highlighting the hoisted expres-
sion, but not the loop body in which it is textually nested.

§.1.2 Couuveying Desd Code

Currently, dead code is indicated implicitly, that is, if it
never gets highlighted, then it is dead code. It would be
beneficial to make the indication of dead code explicit. For
example, one potential method is to use a difTerent font
when displaying dead code in the source window. This
would provide a simple but effective mechanism for
explicitly indiLating dead code.

5.2 Multi-Process Debugging

CXdb's command language was designed with the final
goal of supporting multi-process debugginy: from a single
session. However, this has not yet been implemented.

Being able w0 debug multiple processes is beneficial when
trying to debug processes which fork and exec child pro-
cesses. CXdb will be able to “inherit” the child proceases
created by the initial target process ard then present them
to the uscr for debugging control.

8.3 Multl-Architecture Support

In the evoiution of heterogencous computing it will
become necessary to debug processes running on dissimi-
lar architectures. To perform this, the debugger will have
to b2 able 1o handle the inlcraction of processes which
have different register scts, memory layouts, ¢tc. Also, this
feature ties in very closcly with remote debugging, dis-
cussed in the next section,

6.4 Remote Debugging

Current day development envilonments typically consisl
¢ networks of workswtions with a centrul compute server
for handling large scale problems. Environments are
becoming more and more distributed. To xupport this cnvi
ronment well, CXdb will necd to be able to debug a pro
cesx running on a remote platform. Ths will also be
requireinent for kemnel debugping.
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6.0 Summary

9.0 References

CXdb is an extremely effective tool for solving difficult
development problems, specifically debugging optimized
code. By using a new model 10 communicate the results of
compiler optimizations 1o the debugger, CXdb overcomes
the limitations of STAB- and DWARF-based debugging.

CXdb'’s Compiler-Debugger Interface (CDI) increases
disk space requircments and compilation time, but much
more effectively provides complex information describing
optimized code. CXdb's Graphical 'Jser Interface (GUI)
presents complex program information in easily accessible
components, allowing rapid access 1o information with
advanced program animation techniques that are nceded 1o
solve complex debuggirg tasks.

The CDI and GUI, along with the ability to comprehend
granularity at a level needed for optimized code, make
CXdb an effective tool for understanding compiler opuimi-
zations and solving difficult development problems.
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We are not

that different!



Preliminaries

. Diverse User Populaticn

- Scientist/programmer (80%)
- Interactive experimentation
« Algorithm development
« Correctness primary concern

- Programmer/scientist (15%)
» Production code development
« Tool development
« Performance a major concern

- Diverse Workloads

- Interactive - consistent, fast computer response time

« Compile/link (seconds)
« Run/debug (sub-second)
« Edit/think (sub-second)

- Batch/production - run time or throughput
« Back zround



History - Where we’ve been

. Since 1966 users have been accustomed to fast,
responsive, simple windotwv based editing and debugging

- High speed (~250kb/s) terminals displayed 20 by 80 text
windows one at a time

. The debugger was a tool for browsing files and it knew
about the format of sp=cial files such as the memory
image of a running process, core dumps, and
checkpoints (these all included kernel information)

- The debugger processed symbol information from
compilers to annotate its displays and tor symbolic
browsing (compiler always produced symbols)

. The debugging window displayed 20 consecutive words
in a variety of selectable formats

- The fast interactive environment supported debugging
one bug at a time




History - Where we’re going

- In 1988 we began to change to Unicos, to buy
commercial off the shelf systems rather than continue the
development of our own system

. The pluses - We got better access to Cray compilers, to
standard network products, and use of graphical
workstations

. The minuses - Users got an unfamiliar, more
complicated, less responsive environment and the
debugging tools were a giant step backwards

- Too many tools have a legacy of teletype interfaces

. Users demand services and capabilities at least as good
as they used to have




Currently

They use print statements!

Why?




Current Debugging Situation

. Users are conservative, they won'’t try dbx/cdbx if:
- Special compiles are needed
« It doesn’t work on optimized code
«It’s takes too much tire to learn
. It breaks on some kinds of codes
. Instead they use print statements which:
. Are easier to use and more flexible
- Work for all languages and levels of optimization

. Lack of debugging tools has limited the use of multi-
tasking to large production codes

- Only experimental use of parallel processors, but again
there is a lack of debugging tools




may also be used in the context of a cast or in conjunction with the typedef
storag: class specifier to declare a new typedef name.

1.4.5 Intrinsic Functions

Intrinsic functions have access to the task record and consequently, access
to the interpreter’s semantic stack, the number of arguments, and their
data types. The task record itself is of data type union ae_.TASK_REC,
which has the equivalent typedef name ae_task_rec. Note that arguments
to intrinsic functions do not undergo promotions of any sort before the call
and may be polymorphic in type, as may the return value of the intrinsic.

getrec() The intrinsic function getree() returns a pointer to the task
record of the interpreter executing the call:

ae_task_rec *getrec ()

The symbol table must have been scanned and a definition for ae_task_rec
entered into ae’s internal symbol tables in order to assign a type to the result
of a call to getrec().

symbolof() The symbolof() intrinsic function returns th~ internal sym-
bol associated with the argument. The argument may be any data object,
that is. any identifier except for a typedef name, struct/union/enum tag, or
a goto label. The symbols used by ae have data type struct ae.SYMBOL,
which has the equivalert typedefl name ae_symbol.

ae_symbol *symbolof (<expression>)

The symbol table must have been scanned and a definition for ae_symbol
entered into ae's internal symbo! iables in order to assign a type to the result
of a call to symbolof().

cmai() The cmai() intrinsic function (eolumn major array inder) indexes
its array argument in column major order, as opposed to (*'sx row major
order. In addition. nonzero lower dimension bounds are taken into account
when performing the index calenlations. whereas el[e2] is evaluated by the

10



C interpreter in exactly the same manner as *(el+e2).
<type> cmai (<array>, <expression>,...)

The arguments following the array argument must be integral in type, and
their number must not exceed the number of dimensions in the array. A
pointer is considered syntactically equivalent to an array with a lower di-
mension bound of 0 by cmai(). This routine was added mainly for extra
compatibility with compiled Fortran code; it is not possible to declare arrays
with a nonzero lower dimension bound in the interpreter without using the
typedec declarator (See Subsection 1.4.4).

print() The print() intrinsic function pretty-prints each of its arguments
by traversing the object and its corresponding type descriptor:

void print ([<file>,]<expression>,...)

If the first argument has type FILE *, the remaining arguments are printed
to it. Otherwise, all of the arguments are printed to stdout. Strings ap-
pearing in the argument list must have data type cher [] and not char *
in order for a string to printed out instead of the pointer value.

1.4.6 Access to Local Compiler-Defined Data Objects

As mentioned in Subsection 1.1, one may reference a global variable or rou.
tine declared with the static storage class by the identifier

<fllename>‘<ident>

where <fllename> is the name of the compilation unit'® that the variable
or routine <ident> is declared in. All characters in <fllename> that cannot
be used in a legal C identifier are replaced with inderscores. Shor'd the
name begin with a digit, an underscore is prepended to the entire name.

If the user wishes to access such identifiers without :he p:fix <file-
name>‘, he may insert the symbols for all of the routines and data objects
declared local to the compilation unit <filename> into the current scope by

" The name of the source file passed as an argument 1o the compiler, rot an included
filr name nor the name of the resulting object file,



calling the function ae_load_static_scope():'®

void ae_load static_scope (rec, comp_unit)
ae_task_rec *rec;
ae_symbol *comp_unit;

whele
rec is the task record for the current invocation of the ae interpreter.
comp_unit is the symbol for the compilation unit filename>.

For example, if the interpreter encounters the following code fragment when
invoked from the program described in Subsection 1.1,

ae_load static_scope (ae_getrec (),
ae_lookup_symbol ("test.c”, ae_static_file_hash));

then the user may reference the variable static_global sans the prefix
test_c‘. ae_lookup_symbol() is described in Subsec*ion 1.4.7.

The user may insert symbols for variables local to a routine (for a given
stack frame) by calling the library routine ae_load_dynamic_scope():

void ae_load.dyn_scope (rec, routine, block, fp, ap)
ae_task_rec "rec;
ae_symbol *routine;
int bloek;
char *fp;
char *ap;

where

rec is the task record for the current invucation of the ac interpreter. Task
records are described in Subsection 1.4.5.

routine is the symbol for the routine whose local identifiers are being

loaded. A Fortran main program usually has a corresponding iden-
tifier called MAIN or MAIN_

1" When using versions of the application executive that have nat been compiled entirely
with symbolic debugging information (see Section 2), the urer may manually innert the
symbols for a library routine, or alternatively call it uning the Id aymbol table entry (ner
Subsection ).2.

12



block is the block rumber. To load the outermost block in routine, block
should be zero.

fp is the frame pointer for the stack frame being loaded.

ap is the argument pointer for the stack frame being loaded. On machines
where the addresses of arguments are given as an offset from the frame
pointer instead of the arguinent pointer (i.e., all machines that ae has
been ported to so far), one should pass the frame pointer as the last
two arguments to ae_load_dyn_scope().

Obviously, user must have some way of extracting the frame pointer and
argument pointer (.f the argument pointer is needed) for the stack frame
being loaded. This can be accomplished through a routine in an auxiliary
debugging library, source code instrumentation, or use of a debugging utility
such as dbx or gdb.

1.4.7 Other Commonly Called Library Routines

In addition to calling library routines to control ae's scoping mechanism and
calling the various intrinsic functions, the user may find the following library
routines useful. A symnbol table entry must exist for the routine io be called:
this may be accomplished in any of three ways:

1. A symbol for the routine is manually entered into ae's sviubol tables,
as described in Subsection 1.3.

2. A version of ae that has itself been compiled with symbolic debugging
inform> ion is used (see Section 2), and the stab scanner is invoked to
create .iie symbol table entry for the routine.

3. The routine is called using the ld symbol table entries crcated by the
stab scanner. See Subsection 1.2.

A brief description of the more commonly called library routines follows.

ae_init() When the interpreter or stab scanuer is invoked for the first time,
ac's internal statically allocated symbol tables and type descriptors are ini-
tialized. Should the user wish this initialization to occur witheut invoking

either the stab scanner or the interpreter, he may call ae_init():

void ae_init ()



ae_lookup_symbol() Mast symbol table entries may be accessed through
the interpreter by calling the intrinsic function ae_symbolof{) as described
in Subsection 1.4.5. This mechanism works only for identifiers representing
data objects and program units, not for type names. Should the user wish to
acress the symbolic representation of a struct/union/enum tag or a tvpedef
name, ae_lovkup_symbo'{) may be called to search the appropriate table:

ae_symbol *ae_lookup_symbol (name, table)

char *"name;

aesymbol._table *table;
where name |s the name of the symbol, and table is the table to search. A
pointer to the symbol is returned, or null if there is no symbol in table by
the appropriate name. The following symbol tables are statically a'ocated
by ae:
ae_static tag_hash contains struct/union/enum tags.
ae_static_flle_hash contains the symbols for source files and header files.
ae_static_location_hash contains the linker symbol table entries.

ae_static_ident_hash contains other identifier symbols, including typedef
names.

The task record for a given invocation of the interpreter contains the symbol
tables for dynaniically-aliocated identifiers; the user should examine the
source code docu:mentation for information regarding their access.

ae_removesymbol() If the user wishes to remove an identifier from ac's
internal symbol tables. he may do so by calling ae_.remove_symbol():

ae_symbol *ac_remove.symbol (symbol)
aesymbol *symbol;

Each symbol contains a pointer to the table in which it is inserted. so it is
not necessary to specify this information. A pointer to the symbol in ques-
tion is usually extracted using the symbolof() intriasic function described
in Subsection 1.4.5. Tag names may be removed by using the typeof con
struct to extract the type descriptor, which contains a pointer to the symbol
table entry for the tag. To remove a typedef name, the user must manuallv
look up the symbol in ar's internal tables (see holow), A pointer to the
avmbol is returned.



ae_fprintf{) ae_fprintf() is identical to the C library function fprintf{):

void "ae_fprintf (flle, format, ...)
FILE *file;
char *format;

except that ae’s internal data objects may be pretty printed by specify-
ing different descriptors in the format string. In addition to the usual %d.
Fof, %ox, etc., %S may be specified to pretty print a symbol (the argument
should be of type ae_symbol *) and BT may be specified to pretty print a
type descriptor (the argument should be of type ae_type *). Other internal
data objects may be printed with different descriptors; the interested user
should consult the source code documentation.

1.4.8 Error Recovery

Errors encountered by the ae interpreter and stab scanner fall into four
classes:

errors The interpreter encountered erroneous C source code which caused
it to issue a message. The interpreter continues uninterrupted. Such
errors often occur in declarations, where the identifier in question is
discarded.

stmt errors The interpreter was unable to parse a statement correctly. It
resets itself, and discards remaining inpnt tokens until a semicolon?®
is encountered. Syntax errors are stmt errors. A diagnostic message is
then printed concerning the state of the parser. Diagnostic messages
may be turned off by setting the flag ae_silent to a nonzero value.
See Subsection 1.5.

block errors The interpreter encountered an error which made it unable to
parse the remainder of the current block correctly. It resets itself and
discards input tokens until an unmatched “}” is encountered. A block
error may occur when a formal parameter to the interpreted routine
is not declared. A diagnostic message is then printed concerning the
state of the parser.

"Should a left bracket appear in the input before the semicolon, all text, including
semicolons, in discarded until the matching right bracket in encountered.

15



fatal errcvs An internal check for a condition necessary for the interpreter
to function properly has failed. Versions of libae.a, or a variant
thereof, that have been compiled with the -DAE_DEBUG flag to
cc contain extensive checking for fatal errors. The default action when
a fatal error is encountered is the terminate program execution. If the
flag ae_no_error_exit is set (See Subsection 1.5), then the interpreter
returns to its caller instead of calling exit(). The error message is-
sued often displays faulty data structures in deiail, and therefore can
be quite lengthy.

The error handling mechanism used to reset the interpreter deserves
special mention. The state of the parser ic stored before each statement and
block. This state includes the indices into the various stacks used by the
LALR(1) parser. The grammar was carefully written to insure that should
such an error subsequently occur, the stacks would never have shrunk past
the point where its index was saved. Therefore, error recovery is a matter of
jumping back to the appropriate routine (using the UNIX setjm.p/longjmp
mechanism), restoring the stacks to their previous state by resctting their
indices, and discarding input tokens until a recognizable construct is found
(a ; or an unmatched “}7).

If the flag ae_savestmt_err_jmp is set, the interpreter will save its
current state in the global variable ae_stmt_err.jmp?! before each state-
ment is parsed. The user may use this to return control to the inter-
preter should ar error occur. If the interpreter is invoked in parallel and
ae_save _stmt._err jmp is sct, Lhen there exists a race condition for writing
ae_stmt_err_jmp.

1.4.9 Parallelism

The interpreter can be invoked by concurrently executing threads of control
and no corruption of the symbol tables will occur, so long as certain restric-
tions arc observed. The first declaration for any statically allocated data
object should not be encountered simultaneously by two or more threads.
Once the initial declaration for an object has been parsed, the data object
may be referenced by concurrent irvocations of the interpreter, Secondly, if
an incomplete struct or union type is declared. it should not later achieve
completeness through a type definition parsed simultanecously by two differ-
ent threads,

Ydeclared as ac_error Jump *acatmt _err Jinp
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In other words, one must use the appropriate synchronization in order to
eliminate all possible race conditions for the creation symbol itself, although
nondeterminacy may still exist when modifying to the actual data object
the symbol represents. Once a data object has been declared, subsequent
declarations for it may occur in parallel (so long as they do not complete a
previously incomplete struct or union type).

The machine’s native synchronization mechanism may be used so long as
it accessed through library routines. On Alliant machines, synchronization
consists of calling the routines lock() and unlock().2? If the synchroniza-
tion mechanism is accessed through compiler intrinsics, the user may be able
to writ~ routines on top of them that perform the same function.

Simultaneous invocations of the interpreter may take the input text
stream from a string using sae(). If the input stream comes from out-
side the process, special mechanisms?® may be needed to keep the entire
process from blocking when only one invocation of the interpreter is waiting
for input.?¥ This is discussed in Section 3. Once this is done, however, it is
possible to synchronize the different invocations of the interpreter through
synchronization of their input streams.

1.5 Flags

Several flags may be changed by the user in order to customize the behavior
of the interpreter. Storage for them is allocated in the ae library; the user
should declare them as extern in his own code.

ae_silent (default 0) Diagnostic messages are suppressed when ae_silent is
nonzero.

ae_ntrp_const_addresses (default 0) This flag is usually set (to a nonzero
value) when calling Fortran routines through the interpreter. This al-
lows the application of the address operator (&) to a constant, so that
it may be passed by reference without creating a temporary variable
to hold the constant’s value. For example, if ffunc is the name of

"Gince they exist in a library not compiled with symbolic debugging information,
the routines must be called with their corresponding Id symbol table entries Jdock and
~unlock, or declarations for them manually inserted in ae's internal symbol tables as
described in Subsection 1.3.

P which may require modification of the way that the ae interpreter reads its input
stream

2 Additionally, most parallel UNIX operating systems require that all i/o take place
within a critical section of code,



a Fortran subroutine compiled with symbolic debugging information
that takes one argument of type integer, ae_stab() has successfully
scaaned the symbol t: le, and ae_ntrp_const_addresses is set, then
then the code fragment

{ ffunc (&5); }

passes a constant with the value 5 as a reference parameter to ffunc().

ae_ntrp_nonstd_addresses (default 1) When this flag is set (nonzero),
then the address operator (&) is not ignored if it appears before an
array or function. This is useful when displaying type descriptors:

int a[10];

{ ae_fprintf (ae.ef, "%T", typeof (&a)); }
If ae_ntrp_nonstd._addresses is zero, then the & operator is ignored,
and a type descriptor for an array of ten integers is displayed. If the
fiag is set, the & operator is applied to the array, and a type descriptor
for a pointer to an array of 10 integers is displayed.

ae_ntrp_no_error_exit (default 0) If this flag is set, then the interpreter
or stab scanner will return to the caller instead of exiting when a fatal
error is encountered. See Subsection 1.4.8.

ae_print_brief_types (default 1) When this flag is set, ae_fprintf() (See
Subsection 1.4.7) prints type descriptors in less detail. When the flag
is zero. the often quite lengthy and unenlightening lists of struct /union
members and enum constants are displayed in full detail.

ae_save stmt_err.yjmp (default 0) Il ae_save stmt_err.jmp is set, then
the interpreter will save a pointer to its current state in the global
variable ae_ssmt_err_jmp before each statement is parsed. See Sub-
section 1.4.8.

1.6 Bugs

The argument to the sizeof operator is fully evaluated. Not really a bug
since it is a non-standard construct, the argument to the typeof operator
is also fully evaluated. This will change with the correction of the bug
concerning the sizeof operator.
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The size and exact configuration of a struct defined by the interpreter
may erroneously differ from the one defined by the host machine’s C com-
piler. One may avoid conflicts by declaring new objects using the type name
defined when scanning the executable’s symbol table.

New data objects defined by the interpreter may not contain an initializer
in the declaration statement.

Although function prototypes (new to the ANSI standard) are accepted
by tk~ interpreter, the arguments are not type checked or properly promoted
when a function declared in such a manner is called. Instead, the default
promotions take place. See Section A7.3.2 in Kernighan & Ritchie {KR88].
On many machines, no distin-tion is made in the executable's symbol table
between functions declared with new style and old style parameter lists.

The stab scanner does not create location symbols corresponding to
linker symbols which are private to a compilation unit (See Subsection >.2).
Symbolic information for a routine or statically allocated variable private to
a compilation unit that has not been compiled with symbolic debugging in-
formation must be manually entered using sae_declare() or fra_declare().
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2 Installation

There are four basic versions of the application executive library that can
be built. Each of these may be compiled entirely with symbolic debugging
information (i.e., using the -g option), or with only enough files compiled
with -g to insure that the type information necessary for the interpreter to
operate correctly?® exists in the symbol table of the executable. For the
latter versions (that include the stab scanner), the stab scanner will operate
more quickly and use less space, as there is less information to iranslate to
ae’s eymbol tables. These versions are appended with the suffix “_g.a”, as
opposed to just “.a".

libae.a or libae_g.a These libraries contain the application executive in its
entirety: the C interpreter, stab scanner, both of which rely on ae’s
internal symbol tables.

libae_ntrp.a or libae_'ntrp_g.'a Only the interpreter and internal symbol
tables are included in these versions. The stab scanner is omitted.

libae_stab.a or libae.atab_g.a Oniy the stab scanner and internal symbol
tables are included in these versions. The interpreter is omitted

libae_sym.a or libae_sym.g.a Only ae's symbol table management is in-
cluded in these versions - no interpreter or stab scanner.

It is perfectly reasonable to ask the question, “If the linker only includes
the needed object files from a library, why does one need four different
versionr?” The motivation behind this was portability. Since the Vista
project [TCJ*91, JT91, TIC91a, TIC91Y)] relied on ae’s internal symbol
tables, and although the stab scanner and interpreter can be invoked, they
were not imperative to the operation of Vista, the decision was made to
create a version of ae (libae_sym.a) that could be ported with the least
amount of time and effort. This brings up the question, “Why not split ae
into three different libraries, the interpreter, the stab scanner, and a library
of routines to access ae's internal symbol tables?” The task record passed
throughout the calling sequence?® differs for the interprei~r and the stab

2*The interpreter must find the type descriptors for ae_type, acsymbol, and
ae_task_rec in order to assigh a type to the result of a typeof expression, to check
the Lype of an argument to the typedec declarator, or to assign a type to the result of a
call tc ae_symbolof() or ae_getrec().

€ Actually, a pointer to the task record is passed.
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scanner, with each version being declared as the variant of a union. The
symbol table management routines access fields common to both variants.
When compiling the library to include only the interpreter or the stab scan-
ner, we would not want to include the variant used by the other. Hence
the declaration for union ae_.TASK_REC differs between libae_ntrp.a
and libae_stab.a (and libae.a and libae_sym.a). Linking with routines
from more than one version of the library results in multiple declarations
of union ae.TASK_REC. The stab scanner will then encounter inconsis-
tent type information. See Subsection 1.2 for information on how the stab
scanner resolves inconsistent type inform:.tion.

To compile « given version of the application executive library for a given
architecture, the installer should ed to the top level ae source directory and
enter the command:

make -f Makeflle.<arch> <lib>

where
arch is one of

SPARC A Sparc workstation, made by Sun Microsystems. Use this
version with the supplied C compiler.

SPARC_GCC A Sparc workstation. Use this version with the GNU
C compiler gce.

ALLIANT_FX An Alliant FX/1, Alliant FX/8, or Alliant FX/80. If
porting to a new architecture. one may wish to start by using this
version, as is the most compatible with the portable ¢ compiier
pec.

ALLIANT _FX2800 An Alliant FX/2800 series computer.

lib is one of the aforementioned library versions.

Building the interpreter or stab scanner requires the use of the parser
generator bison [DS88], and the lexical analyzer for the interpreter is created
using the flez utility [Law90], version 1.3 or later. Earlier versions of flex
are incompatible, as the application executive contains its own version of
the skeleton lexical analyzer “flex.skel”. See the instructions for using the
-S option to flex and the ae source code for more information.
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3 Debugger Configurations

The application executive itself cannot be considered a debugger per se;
more functionality is needed, namely the ability to show a stack trace, set
breakpoints, and trap exceptions. These features are quite machine-specific,
whereas ae is more portable, at leas: among UNIX/C platforms.

3.1 Sequential Debugger

Since ae exists as a library, in the simplest configurations the debugger exists
entirely within the same process and address space as the application.

Writing 2 signal handler is a relatively straightforward process. An ini-
tialization procedure tells the operating system which routines, or signal
handlers, to call when certain exceptions occur. The application executes,
and for the sake of argument, assume that an exception occurs. Control is
transferred back to the operating system, which directly invokes the signal
handler (either using the current run time stark or a special signal stack.)
The signal handler needs to do little more than print an error message con-
cerning the nature of the error (“bus error™ or “arithmetic exception™, for
instance), and invoke the ae interpreter. The user may then interactively ex-
amine and modify the state of t~2 program in the usual sense of a breakpoint
debugger.

Doing this often involves calling several compiled debugging routines,
the first of which is usually a stack trace utility. A stack trace must be
able to follow the chain of frame pointers. and print the frame pointer ({p).
argument pointer (ap), and the return address / program counter (pc) for
eacl. frame. ae’s internal symbol tables must then be searched for the routine
that contains the executable code at a given address. This information
should be displayved in a readable format that includes the block number in
question for each routine.

Once the use; has determined where in the course of execution the ex-
ception occurred, he will usually wish to examine various data objects to
gain more information regarding the nature of the error. If these data ob.
jects exist locally to a routine, he may use the stack trace information to
load their symbolic representation into ae's internal symbol tables by call-
ing ae_load .dyn _scope() (see Subsection 1.4.7). Alternatively. this process
can be automated by integrating it with the stack trace utility.

The initialization routine, signal handier(s). and debugging routines may
exist in a library compiled with the user’s code along with the ae library.
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The only modification necessary to the ucer’s code is to call an initialization
routine which secs the signal handlers and scans the symbol table of the
executable using ae_stab().

Figure 1 shows the stack configuration after an exception has occurred
and the ae interpreter invoked. Before each statement is parsed, the in-
terpreter saves its current state in the global variable ae_stmt_err_jmp.?’
Should an exception occur in the interpreter while evaluating an expression
or in debugging routines called by the interpreter, the signal handler can de-
termine that the interpreter was already invoked and transfer control back
to it.

Should the user wish to set breakpoints, he may either do so by call-
ing the signal handler directly in his code before compilation, or dynamic
breakpuints may be placed within the instruction stream at run time. The
latter requires that the executable code be placed in 2 writabie address
space. This can be accomplished with command line options to rthe UNIX
linker, Id. The instructions at the apprcpriate address are saved, and then
overwritten?® with an opcode which raises a signal when executed. A break-
point is then handled in the same manner as any other exception. When
the user wishes to return from the breakpoint, the opcodes at the correct
address are restored, and we exit the signal handler. When the signal han-
dler returns, it restores the registers necessary to continue execution from
that point.

This procedure, of course, clears the breakpoint. In order to leave a
breakpoint in effect, another breakpoint may be set at the next instruction.
This breakpoint automatically resets the first breakpoint and clears itself in
the process of returning.

Interesting variants of this implementation include overwriting the exe-
cutable code with jump statements to the signal handler, as opposed to an
opcode that raises an exception, thereby avoiding operating system inier-
vention. To return from a breakpoint without clearing it, one may append
the stored opcode with a jump statement back to the instruction following
the breakpoirt. jumip to the stored operands (they must exist in a segment
with execute permission). execute them. then jump back to the instruction
following the breakpoint. This procedure is highly dependent upon opcode
sizes, but has the advantage that it does not inhibit parallelism: the exe-

"using the setjimp/long)mp mechanism. with the flag ae_save_stmt _err Jinp set
See Subsection .48,

™in the memory image, not in the file loaded into memory by the operating aystem
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Figure 1: A sequential single process debugger configuration. Alternatively,
the signal handler and ae interpreter may execute on a separate stack.
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cutable memory image is not modified in the process of returning from the
breakpoint.

3.2 Parallel Shared Memory Debugger

In order to debug a parallel program on a fully shared memory machine such
at the Alliant FX/8, very iew modifications are required to the sequential
version.

What is required is operating system support. When an exception oc-
curs, it is only necessary that one processor enter the signal handler and
interpreter so long as it has access to the stack frames of the other concur-
rently executing processors. The operating system must store the values of
the registers in each processor, and allow the debugger access to these. It
should inform us which processor actually caused the exception; this may or
may not be the processor that actually executes the signal handler. If the
threads are multitasked, that is, an arbitrary number of threads of control
are executed by and switched between the available processors, the operat-
ing system should also allow access to the stored values of the registers for
the suspended threads.

After entering the interpreter, the user will typically call the stack trace
routine. The stack trace must show the status of all threads of control.
The user may then examine data objects local to a given stack frame,
for any thread of control, by calling the routine ae_load_dyn.scope()
to load the symbols for the given frame into ae's internal symbol tables.
(ae_load._dyn_scope() is described in Subsection 1.4.7.) Even if the stack
frame in question was created by a differont processor from that currently
executing the interpreter, it still exists in a memory region accessible by the
interpreter, so there is no need to use more than one processor when debug-
ging. If the threads are multitasked. the operating system should allow the
user to change the acheduling status of a given thread.

3.3 Parallel Private Stack Memory Debugger

Should the processor that executes the interpreter following an exception
not have access to the stack frames of the other processors, all processors
may execute the interpreter, with an arbitration sch 'me multiplexing the
input code stream between the separate invocations. Most all versions of
the UNIX operating in une today that support parallel programming allow
only one procennor to execute the signal handler; it in neceasary to “trick™
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the others into executing the interpreter by modifying their stored states,
causing all processors to jump to the handler immediately after the single
processor executing it returns and parallel execution resumes.

An alternative to tl.is scheme is to have a single processor execute the
interpreter. The others execute a data access mechanism communicating
with the interpreter, copving data objects to a region of memory where
the interpreter may access it. The application executive does not currently
support this.

The input stream arbitration must not allow the entire process to block
unless all invocations of the interpreter are currently waiting on input. This
would normally dictate that the arbiiration exist within the process itself.
Figure 3 shows the debugger configuration for a parallel machine where
processors are denied access to each other’s stacks. This architecture inhibits
true multitasking (without extensive copying of stack memory). Here, there
usually exists a one-to-one correspondence between the processors and stacks
for a given process.
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Figure 3: A parallel private stack memory debugger configuration. Because
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4 Conclusion

The application executive is a versatile tool that allows the user to control
the execution of his program at run-time without recompilation; because this
is a major requirement for a debugger, it also forms the basis for a number
of debugging configurations for widely varying computer architectures, both
sequential and parallel.

The appl.cation executive is u.eful in any context where a general locus
of control is desired within an executing program, especially when the user
can be assumed knowledgable of the C language and possibly the UNIX
operating system. The use of ae greatly facilitated the debugging of the
Vista project, in addition to being an integral part of it.

Unless otherwise noted, all features of ae described in Section 1 have
been implemented and tested on an Alliant FX/2800; should any of them
fail to perform as described, it is considered a bug.

Thanks to Allan Tuchman for his input during the acvelopment of the
application executive, for critiquing this document, and last but not least,
for coining the name “application executive”.
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Here is my list of features for my dream debugger of the future:

Fast conditionsl breakpoints and fast memory watch points.

Bounds checking.

A memory map in a user fricndly format.

2 and 3d plots of muitidimensional data simply e.g. nlot A

reverse execution

Why is x=3? Dynamic backward chaining of dependences.

Dynamic linking of new procedures (useful in debugging long executions).
A memory reference trace of shared variables.

A trace of message passing activity (in nice graphic format of coursc:).
Structured display of user data (lists etc. - go SGI).

Race detection.

Dynamlic display of data (i.c. continuously updated).

Performance displays.

Deterministic repiay.

Multiprocess event detection (e.g. stop when p1 is at x and p2 Is at v).
Source level debugging of optimized/parallelized code.

Algorithm level debugging (e.g. better abscraction to higher levels).
Debug alds for numerical problems (e.g. instability due to limited precision).
Range checking of arbitrary values (not just array indicics).

Compare intermediate stutes of new and old verslons of u program during exccution.

Charlie McDowell, University of California at Santa C'ru:



3.1 Automated Analysis

In paralle! programs, the most common and complex errors involve the order of events.
Behavioral abstraction simplifies matters. It is intended to aid the user in reasoning about
relationships with respect to time. The most fundamental of these relationships is
happened-before 28] and is denoted by an arrow (->).

Figure 3 shows a partial order diagram for a two-process application. The arc between
the two timelines corresponds to a message transmission. Events A and C represent the
sending and receiving of the message, respectively. Since a message must be sent before
it can be received, event A must have occurred before event C. This fact can be
represented as A -> C, or “A happened-before C.” This reladonship also exists for each
pair of events on the same timeline. Thus, A -> B and C -> D. Because the happened-
before relationship is transitive, we can also say that A -> D. However, evens B and D
are on separate timelines with no arcs between them. Since no happened-before relation
exists between these events, we simply say they are unordered, or concurrent. This
approach results in an event sequence that is said to be partially ordered because not all
event pairs are ordered.

Node 0

J

Node 1 g 2
Cc D

Figure 3. Partial Osder Diagram

An altemnative approach used by many behavioral abstraction systems is to order each
pair of events. In a systern based on total, or linear, ordering, the timeline in figure 3
might be described as A->B->C->D. Note that this implies a relationship between events
B and D that does not actually exist.

A behavioral abstraction systemn based on partial ordering yields only those relationships
that are actually observed. Furthermore, during the recording phase, the execution replay
system extracts information that is essentially a partial order diagram, and can be used
directly to guide analysis.

To date, the most complete and practical collection of partial order operators are those
developed by Hough [22]. These are precedes (->), precedes closure (*), parallels (1),
and parallels closure (I1*). Precedes (->) is similar to the happened-before relation.
Precedes closure (*) is used to describe any number of consecutive instances of an event.



Parallels (Il) is similar to cthe concurrent relation. Parallels closure (II*) is used to describe
any number of unordered instances of an event.

These temporal operators are used 1o model program behaviors. For example, imagine a
distributed simulation that advances lock step in a series of rounds. Imagine, also, that
each round consists of five phases. Four correspond to communication with north, south,
east, and west neighbors, while the fifth involves the computation for that round. Figure
4 shows this sequence as described using Hough's operators. Abstract events A, B, C,
and D have been defined previously as the four communication events, and E as the
computation step. The parallels closure operator describes any number of events in
parallel. In figure 4, (a)1*) denotes any number of northbound message exchanges.
Consequently, the abstract event X is a model of the entire execution round.

X is (All*) => (Bll*) => (ClI*) => (DI|*) => (E||*}
Y is X+

Figure 4. Execution History Consisting of a Series of Five-Phase Rounds

Using the rules in figure 4, the debugging environment can now t2 told to track each X,
orround of execution, for us. Alternatively, the debugger can be used to verify assertions
about program behavior. With this approach, the programu..er first uses modeling to
define a set of conditions that must hold throughout the execution. Next, the program is
run and monitored by the debugger. Any violations of the assertions trigger predefined
actions such as breakpoints or notifications. For example, the entire simulation, Y, is
defined as a series of rounds in figure 4. This permits any discrepancy between the
expected behavior Y and the actual execution to be detected automatically.

To Hough's temporal operators, PARADIGM adds the concept of a sliding interval. This
mechanism enables the analysis facilities to obtain and reason about performance-related
information. A sliding interval’s leading edge always coincides with the current point in
the execution. Its trailing edge falls some number of events behind. Since avstract events
may correspond to phases, or even rounds, a sliding interval can span a su. 'stantial

sample of the execution.

As an example of the use of sliding intervals, consider the distributed simulation once
aguin, and imagine that load balancing is being added. This requires that the simulation
first be broken into granules. Each of these hosts some number of simulation objects.
The granules are then distributed so that each processor manages roughly the same
number of simulation objects. An imbalance occurs if simulation objects luter migrate
and leave the granules on some processors depleted, while crowding others. Balance can
be restored by swapping granuies so that each processor again manages roughly the same
number of simulation objects.




To tune the simulation, the programmer must weigh the degree of balance achieved
against the overhead incurred. The key parameter is granule size. Decreasing granularity
improves load balance, but also results in more message exchanges during each round.
Determining the appropriate granule size may require careful observation over several
runs. Sliding intervals can be used to facilitate this type of performance assessment.

To determine optimum granule size, the user must observe both the uniformity of the
object distribution and the number of messages exchanged. A simple measure of
uniformity can be obtained by comparing the number of simulation objects resident on
the least and most populous processors. Load balancing overhead is directly indicated by
message volume. During any single round of execution, however, either measure may be
misleading. For example, an object redistribution causes an immediate spike in message
traffic but may reduce ovenall execution time. Ideally, both measurements should be
taken over the entire execution. Unfortunately, this could be a considerable length of
time. Furthermore, post-mortem analysis precludes interactive study.

Sliding intervals permit interactive analysis while mitigating the inaccuracy of
instantaneous measurements. In the load balancing example, a sliding interval may be
defined over some number of execution rounds. The distribution delta and message
overhead would be averaged across the entire interval. As the execution progresses, the
interval slides forward in time. During any interval, an exceptionally large average could
trigger a predefined action, such as a breakpoint. The user could then study the
conditions that prompted the action. The programmer may control the accuracy and
responsiveness obtained—conflicting goals that are determined by interval duration.
Increasing interval length increases response time, but reduces the impact of anomalous
measurements.

3.2 Automated Control

During replay, program events are represented as tuples. Changes made to the
parameters of a tuple are reflected in the corresponding event. For example, consider the
event tuple shown in figure 5, which represents a message send event. The tuple’s class
is comm and its type is send. An arbitrarily long list of attribute/value pairs may follow
these fields. In the figure, the first attribute, destination, identifies the target of the
message as process 0 on node 31. The next pair gives the message type. Finally, the
message itself appears. (In the figure, NULL indicates a zero-byte message.) By
changing the message attribute, a different message may be substituted. Similarly, a new
target may be specified by modifying the destination field.

(comm send destination 31:0 type 4 messagun NULL)

Figure 5. A Send Event




During a breakpoint, the user may alter or even delete any event manually. Alternatively,
the aaalysis system can modify and delete events on the fly. This ability permits
extensive experimentation with the execution without the need for recompilation.

3.3 Reflective Queries

During execution, behavioral abstraction can be used to track the progress ot an
application automatically, to monitor its performance, and to detect any deviations from
its expected behavior. Often, however, a programmer will need to interrogate the
eavironment directly. For example, following a breakpoint, he may query the system to
determine the sequence of events that preceded an erroneous behavior. This type of
query is said to be reflective, since it refers to past events.

Reflective queries are made in the same notation as that used for behavioral abstraction
rules. For example, the rules in figure 4 define the expected behavior of a hypothetical
simulation. Presented as a query, they thould match all the past behavior of the
exccution. If only a partial match is made, the point of deviation may indicate the origin
of an error. If the match fails entirely, further queries can be used to unmask the error. In
this way, a programmer can test assertions acout his application. Failed assertions
indicate discrepancies between expected and actual behavior.

3.4 Cellular Displays

The analysis system can be used to drive simple state-based displays. These consist of a
matrix, or plane, of cells. Each cell represents a program component. The color, shade,
texture, or icon of a given cell corresponds to some aspect of that component’s state.
Figure 6 presents a display that might result from the hypothetical simulation discussed
previously. Here each cell repr~sents a simulation process. Shading is used to indicate
the number of simulation objects mrnaged by a process. Darker shades indicate larger
numbers of simulation objects. B: .onsulting the display, the programmer can determine
immediately that the object distribution is nonuniform. In addition, he can identfy
particularly aberrant processes for further study. In experiments involving similar
displays, test subjects succeeded in identifying patterns i~ thousands of pieces of multi-
dimensional data [29)].

PARADIGM will offer predefined views of system state such as message waffic, memory
consumption, and idle ime. The programmer may aiso use the analysis system to drive
application-specific displays. Lastly, cellular displays may be used in conjunction with
reflective Queries. In this case, a display’s cells are highlighted if the components they
represent satisfy the conditions of a query.
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Figure 6. Cellular Display of Load Balance

4. REPLAY ANALYSIS

Execution replay and behavioral abstraction fit together naturally and have been
combined previously. LeBlanc and Mellor-Crummey {20] describe an environment that
offers both replay and LISP-based analysis of the execution history. In their system,
replay can be used to drive conventional debugging environments. Analysis, however, is
carried out separately from replay, and so cannot be used to dynamically control and alter
execution.

Replay and analysis are closely coupled in the system described by Elshoff [13).
Although specific to the Amoeba operating syitem, this environment supports execution
replay, behavioral abstraction, and source-level debugging. Monitoring information is
collected by an instrumented library and sent to analysis tasks. This requires debugger
and application messages to be intericaved. Consequently, the environment can perturb
the execution, though not beyond the possibilities permitted within the partial ordering.
In addition, monitoring data is maintained in the application’s address space, where it can
be modified by a faulty program. Finally, the environment cannot be used with
conventional debuggers.

In PARADIGM, the combination of execution replay and behavioral abstraction is
termed replay analysis. PARADIGM offers four principle extensions over previous
works. These are: (1) examination, analysis, and modification of events that have yet to
occur; (2) cooperative analytical strategies, including conventional debugging, graphic
state mapping, and behavioral abstraction; (3) experimentation with event ordering in
suspect program fragments, and (4) communication-related performance measurement.
Each of these capabilities is discussed in the following sections.



4.1 Future Tense Query

Conventional source-level debuggers provide considerable information about the present.
This includes such detailed information as the values of program variables and processor
registers, and the currently executing statement in the application. Though less detailed,
information about the past is also provided in the form of a stack frame history.

However, no information about the future is available. The programmer must either infer
future events or wait for them to be realized.

PARADIGM differs from conventional environments in its knowledge of future
synchronization events. This information is captured during the recording phase and is
made available at replay. The programmer is thus able to inspect and even modify future
synchronization events. For example, following a breakpoint, a programmer can examine
the next messages to be received. If he suspects that an error arises from their particular
ordering, he may swap or even delete future message events before resuming execution.

4.2 Mixed Mode Debugging

Both PARADIGM's replay and analysis capabilities are transparently extended 10
conventional source-level debuggers. The replay facilities relieve traditional debuggers
of the problems of the probe effect and intermittent errors. Similarly, behavioral
abstraction can be used to augment conventional environments with event-based
breakpoints. This analysis can also be used to drive the cellular display during execution
or to suppor reflective queries following a conventional breakpoint.

For example, a programmer may use a conventional debugger to set a breakpoint on entry
into a particular procedure. Following the breakpoint, he may consult cellular displays to
obtain a global picture of the system state. These may identify particular components
with suspect states. Next, he may make reflective queries of the analysis system o0
determine the sequence of events that preceded the breakpoint. He may also query the
system for future events, possibly altering them. Finally, he can resume execution from
the conventional debugger.

PARADIGM permits the programmer to use familiar, conventional debuggers more
effectively. Aliernatively, he may employ PARADIGM's analysis facilities alone.
However, these two approaches can also be used cooperatively to achieve capabilities
beyond either technique alone.

4.3 User-Directed Sequencing

In parallel prograrns, many errors are dependent on the sequence of events. PARADIGM
enables the programmer to investigate the effects of alternative sequencing.
Consequently, he may eliminate errors that have been observed or unmask those that
have not.

User-directed sequencing requires that the program first be instrumented with labels
visible to the debugger. Each of these serve as a possible synchronization point. The
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debugger can then be used to enforce mutual exclusion, barriers, or synchronization based
on constraints provided by the user.

4.4 Performance Measurement

PARADIGM'’s analysis facilities permit measurement of elapsed physical time between
any pair of synchronization events. For example, a programmer may determine the
overall time required to send a request, await a consequent remote computation, and
receive a reply. He may also track and time similar actions included in the remote
computation.

These measurements are based on timestamps made during the recording phase.
Consequently, they are immune to the time dilation and execution skew effects caused

during replay.

5. STATUS

To date, much of the event interface and part of the monitor agent have been
implemented on the Intel iPSC/2 multicomputer. These consist of a set of modifications
woven into the operating system kernel that runs on each node of the iPSC/2. Currently,
a wide variety of programs can be replayed. The analysis facilities are centralized,
running on the iPSC/2’s front end, and are still being developed. Thus far, they have
been useful in providing performance measurements. The cellular display has not yet
been implemented.

The kernel modifications result in three new operating system components. These are the
event interface, monitor agent, and double agent The relationship between these
components is shown in figure 7.

-
User User User User User Space
Process | Process | Process | Process
E——

Event Interface
To/from other @t
monitor agents Empt = Kernel Space

’ Homt:r Double

To/from debug Agent Agent Kernel
utity M| process |Process d

<> 4

Figure 7. Relationship Between Node Level Debugging Components
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Encapsulated in the event interface is all of the debugging environment’s machine
dependent code. During the recording phase, the event interface captures events which
are Jart of the partial order diagram needed for replay. This amounts to a small subset of
events involving communication, and the impact per event is kept sufficiently low. For
example, on the iPSC/2, the minimum time required to satisfy a receive request is 308
microseconds. The time required to tiraestamp a receive event is 21 microseconds. A
further 18 microseconds are required to extract the event parameters and complete a
receive record.

Event information is collected in a kernel buffer for later recovery, should debugging be
required. Considerably less perturbation results from writing to a buffer than to a file.
However, the buffer’s limited size constrains the number of events, and heace the length
of execution, which can be recorded.

The most communication intensive execution yet replayed involved an average of 382
recorded events per node per second. At this rate, event buffer space is exhausted after
recording approximately 8 minutes and 32 seconds of execution. A method of extending
recording time is presented in section 6.

The event interface cannot be manipulated directly. A kemnel-resident process called the
double agent serves as an intermediary. As shown in figure 8, the double agent can be
commanded from a debug utility located anywhere on the network. From his remote
session, a user can extract event buffer data using the save command.

Debug Utility

@
=
i
i |

~Processes

O
C
e d
o
=

P------.

BEA.
HESB
HEB

Figure 8. New Host-side and Node-side Software
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As an example of replay, consider the sample program in figures 9 and 10. Figure 9
shows one of two processes comprising a simple test program. This “sender” process is
loaded on nodes 1, 2, and 3 and results in three messages immediately being dispatched
to node 0. A “receiver” process, shown in figure 10, is then loaded on node 0. The
program completes when the receiver displays the order in which it consumes the three
messages.

main ()
{
char bufferf10);

csend (0, buffer, sizecf (buffer), 0, 0);

Figure 9. The Sender Process

main ()

{
char buffer(l10}:;
int i,

for (i=0; i<2; i++) {
crecv (-1, buffer, sizeof (buffer)):
printf ("Received message from node %d\n", infonode());

Figure 10. The Receiver Process

Upon completion of the program, the debug utility is used to extract a transcript of
critical events from the double agent on each node. The recorded critical events provide
all the necessary information to reproduce the execution. The transcripts contain only
individual event historics. They must be correlated to become the schedules which guide
both execution replay and analysis. Schedule generation is performed by a mksched
utility which is transparently invoked by the debug utility's save commanc.

The following are excerpts from a replay session. Here the user allocates four nodes,
loads a sender process on three nodes, and then loads a receiver process on a fourth.

15



SRM> getcube

getcube successful: cube type 4mlén0 allocated
SRM> load 1 sender

SRM> load 2 sender

SRM> load 3 sender

SRM> load 0 receiver

SRM> Message from node 1

Message from node 2

Message from node 3

The receiver process displays the sequence in which the three sender messages are
consumed. This is the same as the loading order: node 0 followed by nodes 1 and 2.
Next, transcripts are recovered and replay schedules generated using the debug utility.

SRM> debug save schedl

Node 0- Recovering transcript.
Node 1~ Recovering transcript.
Node 2- Recovering transcript.
Node 3- Recovering transcript.

Building schedules
4 transcripts of 128 Kbytes

Node 0

(getcube, physnode 0, @248649)

(load, pid 0, 8279339)

(crecv, node 2, seq 18, #0, 8280240->280240)

(csendrecv, r_seq 182, peer 256, s_seq 25, #1, 0280240->280244)
(crecv, node 4, seq 11, #4, Q0280278->280278)

(csendrecv, r_seq 185, peer 259, s_seq 28, #5, 0280279->280302)
(crecv, node 6, seq 11, #6, @280303->280303)

(csendrecv, r_seq 186, peer 259, s_req 29, ¢#7, €280303->280326)
(terminate, pid 0, @280363)

Node 1

(getcube, physnode 2, @248858)
(load, pid 0, 8265927)

(csend, seq 18, #0, 0267211)
(terminate, pid 0, 0267259)

Node 2

(getcube, physnode 4, 0248801)
(load, pid 0, €269944)

(csend, seq 11, #0, 0270028)
(terminate, pid 0, @270195)
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Node 3

(getcube, physnode 6, 8248862)
(load, pid 0, @274819)

(csend, seq 11, #0, 8274905)
(terminate, pid 0, 8275060)

No unused nodes
No unterminated processes
No incomplete receives

Built 4 schedules
SRM>

Having extracted a transcript from each node, debug transparently invokes mksched. At
this time, th: recovered transcripts are displayed and massaged into replay and analysis
schedules. To minimize perturbation, no event processing occurs during the recording
phase. As a result, transcript times are absolute, and both node and sequence numbers are
physical values. The necessary translation takes place in mksched during schedule

generation.

The first event in a transcript is always a getcube record, corresponding to the allocation
of a four node cube. This does not constituts an event, since the associated information is
noi required for execution replay. Consequently, no event number is assigned. Of
interest 1o mksched are the getcube entry’s two attributes, physnode and @ (at).
Physnode has as its value the physical number of the local node. Thus, mksched can
determine that the nodes logically numbered 0 through 3 correspond to the physical
numbers 0, 2, 4, and 6. The second attribute of get cube, 8, marks the creation time of
the allocation in milliseconds. Mksched subtracts this from all other absolute timestamps
to yield relative imestamps.

Each transcript has a subsequent 1oad entry. As with getcube, 10ads are not given event
status, but do provide important information. The 10ad record’s attributes identify the
process ID and creation time of a newly loaded process.

In the transcripts for nodes 1 through 3, csend records correspond to the sole statement in
the sender process. The attributes identify the message sequence number and
transmission time. As an occurrence of csend is an event, an event nuriber (preceded by
‘#') is also given.

A final terminate entry appears in the transcript of every node which runs a process that
exits, either normally or abnormally. The record’s two attributes identify and timestamp
the terminating process.

Mode 0's transcript records the actions of the receiver process. The first crecv entry

corresponds to the receipt of node 1°s message. The entry’s attributes give the event
number along with the sender’s node and sequence numbers. Unlike the csend entry,
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crecv’s @ attribute is an interval. The interval’s first value denotes the time at which the
crecv system call was made. The second value marks the time at which the crecv
consumed the message and completed. Following the csend is & csendrecv event. This
is genersted as a result of the receiver’s print £ () statement. The next two
csend/csendrecv pairs correspond to the receipt of node 2 and 3's messages on
subsequent passes through the receiver process’ loop. Finally, the receiver process exits,
resulting in a terminate entry.

The debug utility displays the message “Built X schedules” once all replay and
analysis scl.zdules have been written. These are saved to a file named by the save
command’s optional argument. The execution can subsequently be replayed using the
debug utility:

SRM> debug replay schedl

schedl.rs.I: 4 schedules of 128 Kbytes
SRM> load 2 sender

SRM> load 1 sender

SRM> load 3 sender

SRM> load 0 receiver

SRM> Message from node 1

Message from node 2

Message from node 3

Debug’s replay command transmits a replay schedule to the double agent on each node.
The execution can then be reproduced by loading the appropriate executables. In the
example above, sender processes are loaded in a different sequence than in the recorded
run. Consequently, the order in which sender messages queue at node 0 is also different.
Nonetheless, the event interface guides execution through the same path as specified in
the replay schedules. The result is output identical to that of the original run.

Figure 7 shows a second system process, the monitor agent. During replay, the event
interface intercepts system calls and other program actions and presents these to the
monitor agent as events. Ultimately, monitor agents will cooperate to collectively
analyze execution. Currently, the information they receive is sent to centralized analysis
facilities on the iPSC/2’s front end. These facilities use the previously generated analysis
schedules to determine temporal relationships between reproduced events.

Significant overhead is incurred each time a replayed event is presented to the monitor
agent process. This consists of the two context switch times required to schedule and
unschedule th= monitor agent. Further, four context switches are required for alterable
events: two preceding event commitment and two following. This scheduling penalty is
the price paid for ease of development. As the monitor agent is a self-contained process,
itis easily loaded from the debug utility, and possesses privileges between those of user
and system processes. This obviates the time-consuming kernel compilation, linking, and
rebooting that were previously required.



Although the monitoring cost cannot be reduced, the number of events processed can be.
This is the intent behind the inzerest and control sets. The interest set contains a list of all
events which will be considered by the monitor agent. The control set lists the subset of
these events which can be modified.

The system queues governing the schedule/analyze/deschedule cycle are shown in figure
11. Initially, the queues are empty. When debugging is to be performed, the monitor
agent process is loaded and finds its way onto the rung. There, the agent will carry out its
initialization before suspending itself on the agentwaitg. Once the replay schedules have
also been loaded, the user process can be faithfully re-executed.

Agent
Stub

agontwaltql | rung 1d_waltq ]

Figure 11. System Queues Involved in Schedule/Analyze/Deschedule Cycle

The user process will continue executing and remain on the runq until encountering an
event. At that time, it will trade places with the monitor agent process and be suspended
on the agentwaitq. With the monitor agent then in control, the event may be analyzed
and possibly altered. Finally, the monitor agent and user process again exchange queues,
and execution is resumed until the next event. During the course of its execution, the
user process may be susperded on a variety of other system queues. Of these, the most
common is the fd_waitg, which is involved in message passing. Unlike conventional
processes, the monitor agent process will not be dispatched during these idle periods.

No debugging instructions are inserted into the user process, nor is it altered in any way.
PARADIGM's monitoring is restricted to the mechanism prescnted here. Consequently,
any source-leve! debugger may be used independently of, or in conjunction with,
PARADIGM's amalysis facilities. Event- and flow control-based breakpoints may thus
be used interchangeably between PARADIGM and a source-level debugger. Similarly,
PARADIGM's replay capability has also been transparently used with other debuggers
such as DECON.

6. FUTURE WORK
PARADIGM addresses the problems of the probe effect with execution replay.

Consequently, it should be possible to distribute the analysis along with the application.
In our first atempts, distribution will be entirely the user's responsibility. Ultimately,
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however, we hope to automate this task. The result should be a more scalable system in
which analysis approaches the rate of event generation.

Another area to be addressed is the recording time limitation imposed by in-core event
transcription. The solution typically employed is a distributed checkpoint. Feriodically,
all nodes simaltaneously suspend processing and generate checkpoints. Event buffers are
also flushed 10 a file at this time. All nodes then simultaneously resume execution until
the next checkpointing interval is reached. With this approach, recording duration is
limited only to out-of-core storage capacity. The solution requires only that nodes remain
well synchronized and that there be sufficient in-core storage to buffer events between
checkpoints.

A problem introduced by distributed checkpoints is perturbation of the network state.
Each time the system globally halts for a checkpoint, the network is evacuated. When
execution resumes, messages which would have been in transit will instead be queued at
their destinations. Consequently, execution may differ between checkpointed and
uncheckpointed runs.

A possible solution is the cursive checkpoint shown in figure 12. As with the previous
appruach, execusion is globally suspended at regular checkpointing intervals. At each
checkpoint, however, the system passes through five phases. During the first phase, en
route messages are collected at their destination nodes. In the second phase, the messages
are returned to their originating nodes. The third phase involves the actual checkpointing
and buffer flushing. Nodes then compensate for clock drift in the fourth phase. Finally,
in the fifth phase, each node resends its returned messages at the same intervals as it did
prior to the checkpoint. Consequently, network state should be restored when execution
resumes.

Q&
&

N[N A

Coliect I Return ISnapshot Synch | Resend

Figure 12. Five Phases of Cursive Checkpoint
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The cursive checkpoint requires significant clock precision. This requirement can be
relaxed by decreasing the interval between checkpoints. It is not yet known whether
reasonable checkpoint intervals can be obtained under this approach.

ACKNOWLEDGEMENTS

This work would not have been possible without the generous assistance of several
people. 1 would like to offer my gratitude to each of them: to Thom crando, for helping
to make the project a reality; to Al Hough, for pointing me in the right direction; to Dale
Wade for helping to build PARADIGM; and to John McCoubrey for remembering all the
grammar I have long forgotten.

The work described in this paper was funded by The MITRE Corporation at its offices in
Bedford, MA.

REFERENCES

{1} Brown, A., and W. Sampson, 1973, Program Debugging: The Prevention and Cure
of Program Errors, London: Macdonald.

[2] Garcia-Molina, H., F. Germano, Jr., and W. Kohler, 1984, “Debugging a
T istributed Computing System,” JEEE Transactions on Software Engineeriny,
SE-10(2), 210-219.

[3] McDowell, C., and D. Helmbold, 1989, “Debugging Concurrent Programs,”
Computing Surveys, 21(4), £93-622.

{4] Counois, P., F. Heymans, and D. Parnas, 1971, “Concurrent Control with ‘Readers’
and ‘Writers,"” Communications of the ACM, 14(10), 667-668.

[5! Gait, J., 1985, “A Debugger for Concurrent Programs,” Software Practices and
Experience, 15(6), 539-554.

[6) Leblanc, R., and A. Robbins, 1985, “Event-Driven Monitoring of Distributed
Programs,” Proceedings of the 5th International Conference on Distributed
Computing Systems, [EEE, 515-522.

(7] LeBlanc. T., and J. Mellor-Crummey, 1987, “Debugging Parallel Programs with
Instant Replay,” IEFE Transactions on Computers, C-36(4), 471-482.

(8] Wirtie, L., 1988, “Debugging Distributed C Programs by Real Time Replay,”

Proceedings of the Workshop on Parallel and Distrib.ted Debugging, SIGPLAN
Notices, 24(1), 57-67.

21



[9] Curts, R., and L. Witde, 1982, “BugNet: A Debugging System for Parallel
Programming Environments,” Proceedings of the 3rd International Conference on
Dismribuwted Computing Systems, Miami, FL, 394-399,

[10] Feldman, S., and C. Brown, 1988, “IGOR: A System for Program Debugging via
Reversible Execution,” Proceedings of the Workshop on Parallel and Distributed
Debugging, SIGPLAN Noidces, 24(1), 112-123.

[11] Pan,D.,and M. Linton, 1988, “Supporting Reverse Execution of Parallel
Programs,” Proceedings of the Workshop on Parallel and Distributed Debugging,
SIGPLAN Norices, 24(1), 124-129.

[12) Forin, A., 1988, “Debugging of Heterogeneous Parallel Programs,” Proceedings of
the Workshop on Parallel and Distributed Debugging, SIGPLAN Notices, 24(1),
130-139.

[13] ElshofT, ., 1988, “A Distributed Debugger for Amoeba,” Proceedings of the
Workshop on Parallel and Distributed Debugging, SIGPLAN Notices, 24(1), 1-10.

[14] Bates, P., and J. Wileden, 1982, “EDL: A Basis For Distributed System Debugging
Tools,” Proceedings of the 15th Hawaii International Conference on System
Sciences, 86-93.

[{15] Hough, A., and J. Cuny, 1987, “Belvedere: Prototype of a Pattern-Oriented
Debugger for Highly Paralle] Computation,” Proceedings of the 5th International
Conference on Distributed Computing Systems, IEEE, 498-506.

{16) Harner, P., Jr., D. Heimbigner, and R. King, 1985, “IDD: An Interactive Distributed
Debugger,” Proceedings of the 5th International Conference on Distributed
- imputing Systems, IEEE, 498-506.

[17] xubin, R., L. Rudolph, and D. Zemik, 1988, “Debugging Paralle! Programs in
Parallel,” Proceedings of the Workshop on Parallel and Distributed Debugging,
SIGPLAN Notices, 24(1), 216-225.

[18] Helmbold, D., and D. Luckham, 1985, “TSL: Task Sequencing Language,”
Proceedings of the Ada International Conference, Paris, France, 255-274.

[19] Goldszmidt, G., S. Katz, and S. Yemini, 1988, “Interactive Black Box Debugging
for Concurrent Languages,” Proceedings of the Workshop on Parallel and
Distributed Debugging, SIGPLAN Notices, 24(1), 271-282.

[20) Snodgrass, R., 1988, “A Relational Approach to Monitoring Complex Systems,”
ACM Transactions on Computer Systems, 6(2), 157--196.

22



[21] Schwan, K., R. Ramnath, S. Vasudevan, and I". Ogle, 1988, “A Language and
System for the Construction and Tuning of Purallel Programs,” IEEE Transactions
on Software Engineering, SE-14(4), 455471.

[22] Hough, A., 1991, Debugging Parallel Programs using Abstract Visualizations,
Ph.D. thesis, COINS Department, University of Massachusetts, Amherst, MA.

[23] Smith, E., 1985, “A Debugger for Message-based Processes,” Software Practice &
Experience, 15(11), 1073-1086.

[24] Malony, A.,J. Arendt, R. Aydt, D. Reed, D. Grabas, and B. Totty, 1989, “An
Integrated Performance Data Collection, Analysis, and Visualization System,”
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers and
Applications, Monterey, CA, 229-236.

[25]) Tsai, J., K. Fang, and H. Chen, 1590, “A Noninvasive Architecture to Monitor
Real-Time Distributed Systems,” Compurer, 23(3), 11-23.

[26] Mink, A., R. Carpenter, G. Nacht, and J. Roberts, 1990, “Multiprocessor
Performance-Measurement Instrumentation,” Computer, 23(9), 63-75.

[27] Reilly, M., 1990, A Performance Monitor for Paralle! Programs, Boston:
Academic Press, pg. 12.

[28] Lamport, L., 1978, “Time, Clocks, and the Ordering of Events in a Dis.7buted
System,” Communications of the ACM, 21(7), 558-564.

[29] Williams, M., S. Smith, and G. Pecelli, 1989, “Experimentally Driven Visual
Language Design: Texture Perception Experiments for Iconographic Displays,”
Proceedings of the 1989 IEEL International Workshop on Visual Languages,
Rome, Italy, 62-67.

(30] LeBlanc, T.,J. Mellor-Crummey, and R. Fowler, 1990, “Analyzing Parallel

Program Executions Using Multiple Views,” Journal of Parallel and Distributed
Computing, 9(2), 203-217.

23



On-the-fly Detection of
Data Races for Programs with
Nested Fork-Join Parallelism

John Mellor-Crummey

CRPC-TR91133
1901

Center for Usearch on Parallel Computation
Riee University

'O Box 1802

Houston, TX 77201 1802



On-t] e-fly Detection of Data Races for Programs with Nested
Fork-Join Parallelism®

John M. Mellor-Crummey!
(johnmc@rice.edu)
Center for Research on Parallel Computation
Rice University, P.O. Box 1892
Houston, TX 77251-1892

August 1991

Abstract

Detecting data races in shared-memory parallel programs is an important debugging prob-
lem. This paper presents a new protocol for run-time detection of datla races in executions of
shared-memory programs with nested fork-join parallelism and no other inter-thread synchro-
nization. This protocol has significantly smaller worst-case run-time overhead than previous
techniques. The worst-case space required by our protocol when monitoring an execution of a
program P is O(V' N), where V is the number of shared variables in P, and N is the maximum
dynamic nesting of parallel constructs in P's execution. The worst-case time required Lo perform
any monitoring operation is O(N). We formally prove that our new protocol always reports a
non-empty subset of the data races in a monitored program execution and describe how this
property lcads to an effective debugging strategy.

1 Introduction

Parallel programs for shared-memory multiprocessors can exhibit schedule -dependeont bugs, which
cause erroneous behavior on some, but not all, execution schedules. The principal cause of such
errors is unsafe or inadvertent communication through shared variables. If one thread of execution
updates a shared variable concurrently with another thread’s access to that variable, the program’s
behavior may depend on the temporal order of the accesses. Such concurrent accesses are known
as “data races”™ or “access anomalies”.

Pinpointing data races is diflicult since adding diagnostic statements to a program can alter the
relative timing of operatious and change the set of execution schedules likely to oceur, ‘T'he act of
trying to isolate a data race responsible for a schedule dependent error can cause the error to vanish,
Thus, the technique used to debug sequential programs — re-executing them with instrumentation
to provide information about program varinble values  is likely to be ineflective for pinpointing,
data races in parallel program executious,

Three principunl strategies have been proposed for isolating data races in parallel programs:
static analysis, post mortem analysis, and on the fly analy.is.

Static analysis relies on classical dependence analysis ol 4 program's text to determine when two
references may refer 1o the same shared variable, Statie techniques conservatively report depen
dences that include all potential data races that conld ocour during paradlel execution, Strategies
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range from those that consider loop parallelism [1, 4], to those that consider more general tasking
models [3, 14]. The conservative nature of static techniques, however, often leads to reports of data
races that could never occur during execution. Experience with static analysis tools has shown
that the number of false positives reported using these techniques is too high for programmers to
rely exclusively on static methods for isolating data races, Combining static analysis with symbolic
execution offers hope for reducing reports of infeasible races {15}

Post-mortem techniques for detecting data races involve collecting a log of events that occur
during a program’s execution and post-processing the log to look for evidence of data races [2, 5, 10].
If exhaustive logs are recorded, post-mortem techniques will report only feasible races. The primary
drawback with post-mortem techniques is that execution logs can be enormous for parallel programs
that execute for more than a trivial amount of time,

On-the-fly techniques involve augmenting a program to Cetect and report data races as they
occur during its execution [6, 7, 9, 11, 12, 13]. These techniques maintain additional informa-
tion at run-time to determine when conflicting accesses to a shared variable have occurred. Like
post-mortem techniques based on exhaustive logging, on-the-fly techniques report only feasible
races. In general, on-the-fly techniques require less space than post-mortem techniques since much
information can be discarded as an execution progresses.

On-the-fly techniques for detecting data races fall into two classes: summary methods [9, 12, 13]
that report the presence of a data race with incomplete information about the references that caused
it, and access history methods [7, 11] that can precisely identify each of a pair of accesses involved
in a data race. From a programmer’s standpoint, the precision of the information possible using
access history methods is desirable for debugging. In the remainder of this paper, we focus on
access history methods.

To pinpoint accesses involved in data races, access history methods maintain two types of
information at run time: the threads (along with annotations identifying the source code statements
involved) that have accessed each shared variable, and information that enables determination of
whether any two threads are logically concurrent. When 1 thread t accesses a shared variable, the
thread

1. determines if any thread in the history list performed an access that conflicts with ¢’s current
aCCOsk,

2. reports a data race if a thread that made a conflicting access is logically concurrent with ¢,

3. removes from the history list the names of any threads that sequentially precede ¢ in the
execution and adds ¢ to the list.

A drawback of previous access history protocols (i.e., those used by Dinning & Schonberg's
Task Heeyeling [6, 7] and Nudler & Rudolph's English Hebrew Labeling [11]) is that in the worst
case, cach shared variable’s access history must contain names for as many as 7' threads  where 7
is the maximum amount of logical concurrency in the program  to guarantee that these protocols
will never certify a program execution as maee free when it actually contains a data race. The space
requiretents for maintaining, such long access histories limit the usefulness of these techniques,
In practice, approximations to these protocols have been implemented that maintain abbroviated
aceess histories of length one or two [6, 7]; however, using abbreviated histories, these protocols
can erroneously certify program executions as being free of data races,

In this paper we present a new access history protocol for detecting data races on the fly i
executions of programs with nested fork join parallelism.  In contrast to previous access history
protocals, onr protocol bounds the length of each variable's history list by by a small constant that



is program independent, yet our protocol ensures that if any data races exist in an execution, at
least one will be reported. With this condition, an execution will never be erroneously certified as
race free.

Bounding the length of history lists has two advantages. First, it reduces the worst-case space
requirements. Second, it reduces the worst-case number of operations necessary to determine
whether a thread’s access is logically concurrent with any prior conflicting accesses.

Section 2 presents a graph model of fork-join program executions. This model serves as a
framework for proving the correctness of our access history protocol. Section 3 presents Offset-
Span Labeling, an on-line method for assigning names to threads in executions of programs with
nested fork-join parallelism. Using Offset-Span Labeling, the concurrency relationship between any
pair of threads can be inferred by comparing their names. Although similar to English-Hebrew
Labeling [11], in the worst-case, Offset-Span Labeling assigns asymptotically shorter thread names,
which lead to improved space and time bounds for access history protocols that use them. Section 4
presents our new protocol that uses bounded acccss histories to detect data races. Using properties
of fork-join graphs and their respective Offset-Span labelings, we prove that if any data races
exist in an execution of a program with nested fork-join parallelism but no other inter-thread
synchronization, our protocol will report at least one data race for each shared variable involved in
a race. Section 5 compares the time and space overhead of using our access history protocol and
Offset-Span labels against the overhead with incurred using other access history methods. Section
6 describes the current status of this work and directions for future work.

2 A Model of Concurrency in Fork-Join Program Executions

This section defines fork-join graphs that model the run-time concurrency structure possible using
closed. nestable fork-join constructs. Parallel Fortran programs that use nested parallel loops and
sections are an instance of this programming model.

A fork operation terminates a thread and spawns a set of logically concurrent threads. LEach
Jork operation has a corresponding join operation; when all of the threads descended from a fork
terminate, the corresponding join succeeds and spawns a single thread. A thread participates in
no synchronization operations other than the fork that spawned it and the join that terminates it.
Each vertex in a fork-join graph represents a unique thread executing a (possibly empty) sequence
of instructions. Each edge in a fork-join graph is induced by synchronization implied by a fork
or juin construct. A directed edge from vertex ) to vertex #3 indicates that thread f; terminates
exccution before thread t; begins execution. Figure 1 shows a fragment of parallel Fortran and a
fork-join graph that models the concurrency present during an execution of the code. Entering a
parallel loop corresponds to a fork; exiting a parallel loop corresponds to a join. Each vertex in the
fork-join graph is labeled with the sequence of code blocks whose execution it represents,

Before formally defining fork-join graphs, we define some useful notation for directed acyelic
graphs (DAGs). In a DAG (7 = (V. E), the pah wlation r ~¢; yis true for r,y € Viff there is a
path from r to y along edges in F; similarly £ o y is true ¢ff there exists no directed path from
£ to y along edges in E. The gath star welation ¢ -7 yis true for sy € V iff r ~q yvVr = y.
namely there is a path from r to y aleng edges in F, or 2 and y are the same vertex.

Definition 1 constructively defines fork-join graphs which represent the concurrency relationships
among, threads in an execution of afork join program. Fork join graphs are a subset of series parallel
graphs. The rules for constructing fork join graphs ensure that no vertex has a singleton predecessor
with outdegree 1. Such a pair of vertices would represent a pair of threads that execute sequentially.
The vules for composing, fork join graphs collapse such pairs since their concurrency relationship is



[code block A]
PARALLEL DO I=2,4
[code block E]
IF (1I.EQ.2) THEN
PARALLEL DD J = 1,2
[code block C]
ENDDO
ENDIF
[code block D]
PARALLEL DO J=1,T
[code block E]
ENDDO
[code block F]
ENDDO
[code block G]

Figure 1: A fragment of parallel Fortran and its corresponding fork-join graph.

trivial.
Definition 1 A fork-join graph G = (V, E,v,rc, Vonk) 6 @ DAG that

o has a designated source verler v,,. such thal v, ~g v, for sllv el
o has a designated sink vertez v ny such thal v ~g vnk, for allv e V.
o can be constructed using the following rules:
1. A singleton verter v denotes a trivial fork-join grarh G = ({v}.0,v,v).

2. A compound fork-join grapk can be formed in two ways:

parallel composition
Aset S ={G, = (Vi E\, 0y Vonx, )i = 1,1} of 1 > 2 disjoint fork-join gruphs can
b linked in parallel to form a new fork-join graph G = (V, F, v,,., Vgni) where

{"'arr- l'lnk} + U.:l,y. ‘I'I

v
: U|.-.-l.n (E. + {( Vorcs Vary )} + {( Usnkis vmk)] )

series composition
A pair of aisjoint fork-join grapis, Gy = (Vi K}, veepyVanky) and Gy =
(Vay EguVareqy Vanky), can be linked in series by merging vertiees vgp, and vy (o
Jormi a new fork-join graph G = (VE 04 Vi), wher

Vom Vi V= )
E = it Ey = {(terg)l(Mareg v) € E2) 4 {(Vanky o)l tarigv) € E)

The parallel composition rule deseribes hew to link a set S of arbitrary fork join graphs in
parallel by nesting then inside & new, closed fork join construct, ‘The parallel compaosition rule adds
two new threads vy, the thread before a new fork, and vy, the thread after the corresponding,
new join, as well a synchronization edge from v,,, to the source nade of cach fors, join graph in &,
and a synchironization edge from the sink node of each fork join graphin 8 to ey In figure 1, the



fork-join graph for each parallel loop is formed by parallel composition of the fork-join graph for
each loop interation.

The series composition rule describes how to link a pair of arbitrary fork-joia graphs in sequence
by merging the sink vertex of the first graph with the source vertex of the second graph and retaining
all of the edges. In figure 1, each node labeled “B,D” is the result of series composition of trivial
fork-join graphs representing code blocks B and D respectively. Similarly, the fork-join graph that
represents iteration Im2 of t'ie outermost parallel loop is the series composition of the fork-join
graphs for the two loops nested inside.

Two vertices v; and v, in a fork-join graph G represent logically concurrent threads in an
execution of a fork-join program iff vy & v2 A va2 %45 vi. The only ways this formula can be
falsified is if v; and v, are not distinct, or if v; ~¢ v2 V v2 ~¢g v;. If the vertices are not distinct,
the threads are the same and thus not concurrent. In the second case, the vertices are related by
a path of directed edges. The interpretation of a directed edge (as described earlier) as temporal
precedence and the transitivity of this precedence relation for paths of edges means that v, and v;
could not in fact be concurrent if they are connected by a path of directed edges.

To facilitate inductive proofs about fork-join graphs, we define rule(G) to be the minimum
number of applications of the series and parallel composition rules needed to construct a fork-join
graph G from a set of trivial fork-join graphs. (It is important to define rule(G) to be the minimum
number of rule applications since applying series composition to a pair of trivial fork-join graphs
results in another trivial fork-join graph.)

3 Offset-Span Labeling

Ofiset-Span labeling is an on-line scheme for labeling each thread in a fork-join program execution.
Each thread’s label contains information that identifies its position in a corresponding fork-join
graph. By comparing the labels of two threads, their concurrency relationship can be deduced.
Offset-Span labeling is similar to Nudler and Rudolph’s English-Hebrew labeline [11). In both
Offset-Span (0S) and English-Hebrew (EH) labeling, a thread in an execution of a fork-jcin pro-
gram computes its own unique label using only local information — specifically, the label(s) of its
immediate predecessor(s) in a fork-join graph. (In contrast, the Task Recycling technique {6, 7]
1equires a centralized data structure to maintain information about free task descriptors. It is
preferable to avoid use of centrelized data structures in parallel programs since they tend to in-
troduce serial bottlenecks.) In both EH and OS labeling, the length of a thread’s label increases
along with the nesting depth of fork-join constructs. Alko, both schemes use a lexicographic-style
comparison of labels t. determine if the threads they represent are concurrent.

An advantage of OS labeling is that its definition guarantees that the length of a thread's
OS label is always proportional to the current nesting depth of the fork-join pair surrounding the
thread. The length of the OS label for a thread following a join is always equal to the length of the
08 label for the thread that executed the matching fork. Using EH labeling (as described in [7]).
the length of a thread’s label can grow in proportion to the number of fork operations encountered
along the execution path leading to the creation of the thread; the length of an EN label following
a join is greater than the length of the EI label for the thread that executed the matehing fork.
Dinning and Schonberg mention the existence of a heuristic [7. p. 4] that reportedly limits the
lengh of EH labels to the level of nesting, It is important to minimize the length of labels used
by these methods since shorter labels reduce the space required to store them at execution time as
well as the time spent comparing them.



Definition 2 An Offset-Span labeling of a fork-join graph G ussigns a label consisting of a non-
null sequence of ordered pairs to each of the vertices of G. Each ordered pair [0,8] consisis of two
components: the offset and the span. The span indicates the number of thread: spauned by an s-
way fork from which this label pair is descended. The offset distinguishes among relatives descended
from the same parent. An OS5 labeling of a fork-join graph G = (V,E,v4rc,Vank) 18 computed as
Jollows given an initial OS label for v,,. thal consists of a non-null sequence of offset-span pairs:

1. For a vertex v € V of outdegree n > 1 (v is the source node of some fork-join subgraph of
G) that has an OS label of L, where L i3 some non-empty sequence of label pairs (hereafter,
we use the notation OSL(v) = L): let v; denote the ith child of v, 0 < i < n (the ordering
of the children is insignificant). Assign OSL(v;) = L[i,n], where jurtaposition of L and [i,n]
implies concalenation.

2. For a vertex v of indegree n > 1 (v s the sink node of some fork-join subgraph of G) that
has some labeled vertez v' as a predecessor: 3Ly uw s, OSL(V) = L(u,w][z,y], where L is a
(possibly null) sequence of label pairs. (In a fork-join graph, OSL(v') must be of this form.
Any node in G other than v,,. or ven; has an OS label consisting of at least two label pairs.
By the definition of fork-join graphs, v,,. cannot be the predecessor of any verler of indegree
> 1 and v, cannol be the predecessor of any vertez.) Assign OSL(v)= L[u + w, w].!

The labeling is complete since by the composition rules no vertex in a fork-join graph can
have a predecessor of outdegree 1 and itself be of indegree 1. The labeling is consistent since the
composition rules guarantee that any vertex that is a successor of a vertex with outdegree > 1 has
indegree 1. Comparisons between two labels are made by comparing the corresponding ordered
pairs in the label sequences from left to right. Each thread's OS label in an execution of a program
with closed, nestable fork-join parallelism can be computed on line efficiently from the label of its
predecessor. Figure 2 shows an OS labeling of the fork-join graph shown in figure 1.

The following lemma shows the relationship between the labels assigned to the source and sink
of a fork-join graph. Note that this lemma also implies that the length of each thread’s OS label
assigned using the rules of definition 2 is directly proportional to the nesting depth of fork-join
constructs surrounding the thread.

Lemma 1 In an OS labeling of a fork-join graph G = (V,E vy ¢, tank), if Vs has a label P|o,s),
where P is an arbitrary (possibly null) sequence of ordered labcl pairs and o and s are arbitrary
constants, then v, has label P[o',s), for some o such that o mod s = ¢ mod s.

Proof Induction on the size of G as measured using rule(G).

Base Case, For any trivial graph G (rule(G) = 0), the lemma is satisfied with o’ = o.

Induction Hypothesis. Assume that the lemma holds for every fork-join graph G with rule(() < k.
Induction Step. Show that the lemma holds for each fork-join graph G with rule(G) = k. We
consider applying each of the composition rules to a collection of (,,i = 1,n (n > 2) fork-join
graphs with 37, rule(G;) = k - 1.

series An application of the series composition rule to form G = (V,E, vy, Vankz) from 2
disjoint fork-join graphs Gy = (Vi,E}, vyrey. Uynky) and Gz = (Vi By, Varey, Vankz), Where
rule((7}) + rule(G3) = & = 1. By the induction hypothesis, the lemma holds for both ¢/,
and (/7 separately. Lot v,y have OS label Plo,s]. By the induction hypothesis, v,,k, has
label Plo;,s]. where 0o mod 8 = o) mod 8. Let vy, have 08 label P[o;. 4], by the induction
hypothesis v,,iy has label Plo,, 8], where o) mod s = 03 mod o, The series composition rule

"I'hix label in the same regardiens of the predecessor v’ chosen. ‘The label of a sink node for a fork-join rubgraph
is determined by the label of the corresponding, source node. (See Lemma 1))
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Figure 2: An Offset-Span Labeling of a fork-join graph.

merges Y,nk; With v,,.;. After the merge, the labeling remains consistent. Since v,..; has ne
incoming edges in G5, the label of the merged node is completely determined by the labels
of the ancestors of v,,x; in G;; thus, the label of the merged node remaius Plo;,s]. Since
Vsnk; has no outgoing edges in Gy, the outdegree of the merged node in G remains the same
as that of v,,., in G3. Therefore, the labels of the descendants of v,,.3 remain the same. By
transitivity, o mod s = o3 mod s and the lemma is satisfied for graph G'.

parallel An application of the parallel composition rule to form ' = (V,E, v, Uank) from a
set 8 = {G, = (V,E,,Varcir Uanki)|i = 1,1} of n > 2 disjoint fork-join graphs, where
Yo, rule(G,) = k — 1. By the induction hypothesis, the lemma holds for both cach @,
separately. Let v,,., have OS label P[i - 1,n]. By the induction hypothesis v,,i; has label
FP’lo,.u), where (1 — 1) mod 1 = o, mod n. The parallel composition rule links v, to each
Carcrs § = 1.0 and links vk, 1 = 1,n 10 vyuk. Let the QS label of v,,. be Plo,s]. Letting
VP’ = Plo,s] makes the all of the labels of nodes in subgraphe (i,, i = 1,n consistent with
the labeling rules. By labeling rule 2, v,,x it assigned label Plo + 9,48] since its ancestors
Usuk,y 1 = 1,n have OS labels I”[o,,n] = Plo,s][o,,n] rer octively. The lemma is satisfied for
G since omod 5 = (0 4+ 8) mod s.

The lemma follows by the principle of induction. U

In the following lemma, we show that by comparing the OS5 labels for a pair of threads in an
execution, it is straight-forward to determine if one thread has finished before a second thread begins
(1.c., the vertices representing the threads are related by -« in the fork join graph ¢ representing
the execution).

Lemma 2 Given the QS labeling of a fork-join graph ¢ = (V[ F v egk). & oo 4o is trae for



z,y € V ifl one of the fallowing properties holds for their respective OS labels, OSL(z) and OSL(y)

case 1 3ps(OSL(z) = P)A(OSL(y) = PS) where both P and S are any non-null sequence nf
ordered label pafrs.

case 2 3ps, s, 00.0,(0SL(z) = Plo;,8]S:) A (OSL(y) = Plo,,s]S,) A (0z < 0,) A (0 mod 8 =
o, mod s) where P, S:, and S, are (possibly null) sequences of ordered pairs.

Proof Any fork-join graph that contains more than one vertex must have been constructed through
some sequence of applications of the parallel and series composition rules. Let G, = (V,, E,, Vyrces Vsnks)
be the smallest fork-join subgraph of G that contains both z and y. Case 1 holds iff G, was con-
structed from a set of disjoint fork-join graphs using the parallel composition rule, z = v,,.,, and
Y € Vo= {Vyrcq.Vonks}. Case 2 holds iffl (a) G, was constructed from a set of disjoint fork-join graphs
using parallel composition, z € V, — {v,nk,}, and ¥ = v,pnk,, or (b) G, was constructed by linking
some pair of disjoint fork-join graphs using series composition. In case 2, P is null iff G, = G,
Sz is null iff z = v,,.,, and S is null iff y = v,nk,. The enumeration of ancestor relationships
covered by these cases is complete. Case 1 and 2a cover all ancestor relationships if the last rule
applied to form G, was tl. ..rallel composition rule. In these cases z has to be v,,., or y has to be
Vank,» Otherwise G, would not be the smallest subgraph that contains both z and y with z ~¢ y.
Case 2b covers al! possible ancestor relationships if the last rule applied to form G, was the series
composition rule. a

Below, we define a left of relation that defines a partial ordering of vertices in a fork-join graph
that are not related by the ~¢ relation (i.e., vertices that represent concurrent threads). The
access history protocol described in section 4 requires a labeling scheme for which a left-of relation
can be defined. English-Hebrew labels contain sufficient information to compute a left-of relation,
but labels assigned by the Task Recycling technique do not Here we define a left-of relation for
OS labels.

Definition 3 For cn OS labeling of a fork-join graph G = (V, E,v4rc, Vank), the “left of " relation,
denoted r <;; y, 18 true for z,y € V ifl the following property holds for their OS labels OSL(z) and
OSL(y)

3p.:,.8,(0S L(z) = Plos,s]5:) A (OSL(y) = Plo,,5]5,) A (o mod 8 < o, med 8), P is
a non-null sequence of ordered label pairs, S, and S, are (possibly null) scquences of
ordered label pairs.

The left-of relation establishes a canonical ordering of relatives with respect to their lowest
common ancestor.

4 A Protocol for Detecting Data Races

Two accesses to the same variable are conflicting if at least one of them is a write. A data race in
the execution of a fork-join program exists when two or more concurrent threads perform conflicting
accesses to the same shared variable. In terms of the fork-join graph model, a data race exists in an
executjon if two threads represented by vertices v, and v, in a fork-join graph ¢ perform conflicting,
accesses to the same shared variable and o, g, v, A v, 42 v, (the threads are unordered by
synchronizaion, and thus their executions are logically concurrent).

To detect data races on the fly, cach potentially unsafe access 1o a shared variable during
a parallel program execution must be monitored. A program transformer must allocate ¢ cess
history storage for cach shared variable with a reference that is the endpoint of a dependence



carried by a parallel construct (i.e., static analysis was unable to prove that some reference by a
logically concurrent thread does not result in a conflicting access to the variable). At each variable
reference that is an endpoint of a dependence carried by a parallel construrt, the transformer must
add a call to a monitoring protocol that inspects and updates the variable’s access history. The
transformer must also insert statements that enable each thread to compute a label that reflects
its concurrency relationship to other threads. At execution time, the monitoring protocol reports
any logically corcurrent, conflicting accesses to a shared variable.

For an execution of a fork-join program, the existence of a data race involving a shared variable
is solely a function of which threads access it and the concurrency relationship between the threads
that is implied by the fork and join constructs in the program. Therefore, we can consider data
races for each shared variable independently.

We define an access interleaving to model a set of accesses to a shared variable by threads in a
fork-join program.

Definition 4 Anaccess interleaving for a shared variable X by threads whose run-time concurrency
relationship is modeled by a fork-join graph G = (V,E,v,,.,unt) 15 denoted lg. lg consists of
a totally ordered sequence of accesses A,....,A,. Each access is performed by some thread; let
tG(A) € V' be the vertex in G that represents the thread that performed the access A. An access
A, € Ig marks verter vg(A,) with either an X,.,q4 0or an Xy e token. Multiple accesses in lé‘ may
mark the same vertezr, and a verter can be marked with both X,..q and X ... tokens. No access
A, € IX may mark a verter vy, € V' if some 4, € 1X, i < j previously marked a verter v; € V such
that v} ~g v3.

The definition of an access interleaving assumes sequentially consistent [8] shared memory. We reier
to an access in l&( as a read of it marks a vertex with an X,..q token, or as a write if it marks a
vertex with an X,.., token,

In the remainder of this section, we present protocols for detecting data races caused by con-
flicting accesses to a single shared variable and prove their correctness. We formulate the problem
of on-the-fly detection of data races as detecting conflicting, logically concurrent accesses in an
access interleaving for a shared variable. An access interleaving I for a variable X and a fork-join
graph G = (V, E . vypco Uank ) is checked if for each access 4 € l('}'

e if Ais aread the checkread protocol (figure 3) is called with a pointer to X' 's access history
and the label for thread v (A) (the thread performing the access). and

e if Ais a write the checkwrite protocol (figure 4) is called with a pointer to X''s access history
and the thread label for v (A).

The checkread and checkwrite protocols determine whether an acces< by the current thread is
involved in a data race with any access earlier in the interleaving. Any thread labeling scheme is
suitable for use with this protocol as long as the (. ~g;, and <, relations can be determined
using label comparisions.

If checkread is invoked when any thread reads a ehared variable X, the protocol guarantees
that the Ry, component of X ‘s access history contains the label for the “lowest™, “rightiost™ thread,
and Ryj. the label for the “lowest™, “leftmost™ thread. The concepts of “lowest™, “rightmost™, and
“leftmost™ are well-defined for threads in an execution modeled by a fork-join graph ¢ in ters
of the ~=¢;, -=2.. and «¢; relatic s, If checkwrite is invoked when any thread writes to X the
protocol guarantees that the Wygge component of X 's access history contains the label for the thread
that last performed a write to that variable,

The theorems that follow in this section show that the checkread and checkwrite protacals
guarantee that if an access interleaving contiuns ane or more data races, at least one of these races



checkread(access history, thread label)
if access history .W),.: 7> thread_label then
report a WRITE-READ data race
endif
if thread_label <; access history .R;); or
access history .R;; ~G thread.label then
access history Ri) := thread_label
endif
if accass history R), <c thread_ label or
access history .R)y ~G thread_label then
access_ history R)y := thread_label
endif
end checkread

Figure 3: Monitoring protocol for a read.

checkwrite(access history, thread_label)
if access history” W), % thread_label then
report a WRITE-WRITE data race
endif
if access history .R); 7¢ thread_label or
access history .R)y #-;; thread_label then
report a READ-WRITE data race
endif
access history .W),,: := thread.label
end checkwrite

Figure 4: Monitoring protocol for a write.

will be detected and reported. Thus, using these protocols, an execution will be reported free of
races iff no data racos are present,

Theorem 1 In a checked access interleaving 1Y for a variable X and a fork-join graph ;-
(V. E . tyeo o). checkwrite will report a deta raee for a write in 1Y if it is logically coneurrent
with some earlicr mad in 1X

Proof Suppose r € l(f marks # € V' with an X,.,q token, w € 1Y marks 'V € V' with an X,
token. v precedes win 1Y, and B and W are logically concurrent, but check write fails to report
a data race for u.

Without loss of generality, assume that vertices in Voare named by their thread labels, If
checkwrite reports no race for w. then it must be the case that Ry - -7 W ARy <5 W when
checkwrite ir called for w (e, Wois not logically concurrent with previous readers Ry, or Ry
saved by the checkread protocal).

Since checkread hias been executed for each wad preceding, w in the interleaving (inclading r).
we are guaranteed thi

Riv <, BWARyy fei B2 M < Ry ARy fo; B ARy /o Ry ARy /o Ry th

I}



It must be the case that R %-g Riy A R 47 Ry1; otherwise, by transitivity of the ~g relation,
R ~% W, which violates the supposition that R and W are logically concurrent. This implies
R # Ry3 A R # Ryr. Using this to refine (1) we can conclude that if such an R exists,

Ri1 <6 RA R < Ry (2)

If Ryr = Ry3, then (2) is not satisfiable and there can be no R concurrent with W; therefore, if such
an R exists
Rir # R (3)
Let G, = (V,,E,,Vercs, Vsnk,) be the smallest fork-join subgraph of G that contains both R1j
and Ry;. By (1) and (3), Ry1 ¢ Rir ARyp o3 Ry); therefore, vypc, # R11A Usrc, # Rir. A corollary
of this is that |V,| > 1 which implies rule((G,) > 0. The composition rule last applied to construct
G, could not have been the sevies composition rule. The condition that G, is the smallest fork-join
graph containing both Ry; and Ry, would imply that one vertex must be in each of the components
linked in series; this contradicts (1) since Ry and Ryy would be related by ~+g. Therefore, G,
must have been formed from some set S of disjoint fork-join graphs using the parallel composition
rule. Both R;; and Ry cannot belong to the same element of S, otherwise G, would not be the
smallest fork-join graph containing them both. Therefore, v,,., i8 the closest common ancestor of
R11 and Ry, and v,,4, is their closest common descendant. Since Ryy ~g W and Ryy ~¢ W, then
Venk, ~g W. As justified below, v,,., must be an ancestor of R (i.c., v,, ~¢ R):

o If R~¢ v,c,.then R ~¢ R1) A R ~¢ Ry;. By transitivity of the path relation, R ~¢ W,
contradicting the supposition that R and W are logically concurren.

e If R is to the left of v,,.,, then by definition of <, R <; Ri1. contradicting (1).

e If vyre, is to the left of R, then by definition of <¢;, Ry <¢; I, contradicting (1).

Also, vk, ¥a K. otherwise, by transitivity Ryr ~¢; R A Rpy ~¢; R, contradicting (1). By
the definition of closed, nestable fork-join graphs. every descendant of a source vertex that is not a
descendant of the corresponding sink vertex must be an ancestor of the sink vertex. Therefore, since
Varcs ~=; B A vk, i R.then R ~¢ vk, But then by transitivity, B ~¢; W, contradicting the
supposition that n" and W are logically concurrent.

By showing a contradiction in every case to the supposition that there can exist some read »
that precedes a write w in 15 such that they mark logically concurrent vertices but checkwrite
fails to report a data race for w. the theorem is proven, 0
Theorem 2 In a checked acevss interleaving 1Y for a variable X and a fork-join graph (/=
(VoE  Ugpes Penk ), if any two writes in 1X arn logically concurrent,then checkwrite will report o
dala ruce.,

Proof Suppose vertices V. C V' are marked with X, tokens by accesses in l(}' and at loast one
pair of vertices in Vi, is concurrent, ‘I'wo writes in an access interleaving are adjacont if there is no
other write between them in the sequence. Iif the vertices marked by each pair of adjacent writes in
1Y are related by the path star relation -7, by transitivity of -7 no pair of writes in V. would be
concurrent. By the original supposition, at least two of the vertices in V', are concurrent; therefore,
sote pait of vertices vy, vy € Vo that are marked by a pair of adjacent writes in I,'}' must not be
reluted by -7 Without loss of generadity, let vy be the vertex marked by the first of the adjacent
writen: thus, vy 7+ g0 Sinee the writes by ey oand epoare adjacent, Wy e will contain the thread
label for vy when checkwrite s called for the following, write by v, eheckwrite will report o data
race ninee 1y Aol 1y We have shown that if write accesses in 1Y mark any two concurrent vertices
in ¢/, then a data race will be roported, thus proving the theorem, t



Theorem 3 In a checked access interleaving IX for a variable X and a fork-join graph G =
(V,E, Vyre, Vink ), @ data race will be reporied if a read in lé' s logically concurrent with some
earlier write in IX.

Proof Suppose v € lé‘ marks W € V with an X ;. token, r € IC),-" marks R € V with an X,
token, W precedes Rin I, and W and R are logically concurrent, but no data race is reported.

Without loss of generality, assume that vertices in V are named by their thread labels. If there
is no intervening write between w and r in Ig, when checkread executes for r, Wjaar = W and
checkread will report a data race since by supposition W and R are concurrent.

If there is some sequence of writes w;,...,w, between w and r in lé" then it cannot be the
case that W ~¢ vg(w)), vg(w;) ~g vg(wi41) for 1 € & < n, and vg(wy,) ~¢ R; otherwise
by transitivity of the ~g relation W ~~2, R, contradicting our original supposition that they are
concurrent. If W~z vg(wy), then vg(uy) 45 R, otherwise W and R could not be concurrent.
In this case, at vertex R, W14y Would contain the label for vg(w,) and checkread would report a
data race between vg(wy,) and R. Otherwise, if W +g vg(wy), then w is concurrent with w, and
by theorem ? checkwrite will report at least one data race for some pair of adjacent writes in the
subsequence of /¥ beginning with w and ending with w,,. o
Theorem 4 In a checked access interleaving 1Y for a variable X and a fork-join graph G =
(V. E, Varc, Vunk ), at least one data race will be reported if there are any conflicting, logically con-
current accesses in 13 .

Proof There are three cases of conflicting accesses to consider,
1. a read is concurrent with a write, and the read precedes the write in l(f .
2. two Writes are concurrent,
3. a read is concurrent with a write, and the write precedes the read in 1Y

By theorem 1, a data race will be reported for any concurrent accesses in case 1. By theorem 2 a
data race will be reported for any concurrent accesses in case 2. Finally, by theorem 3, a data race
will be reported for any concurrent accesses in case 3. 0

Theorem 4 shows that if any duta races are present in an access interleaving, for a shared ariable,
at least one will be reported using our checkread and checkwrite access history protocols. By
applying the solution to detect any races for an individual shared variable to each of the shared
variables in a program. we can guarantee that if a program execution exhibits any data races given
a particular i ., then the checkread and checkwrite protocols will repon at least one data
race for each shared variable that is actually involved in a race during that execution.

Using the monitoring protocol described in this section leads to an effective debugging stravepy
for eliminating data races from a programn execution for a given input. Run the program on the
given input with the monitoring protocol in place. Each time a data race is reported (the access
history protocol precisely reports hoth endpoints of the race), fix the cause of the data race, and
re execute the program with the sume input, Since the access history procotols given in this section
will report data races (if any oxist) rogardless of the interleaving order, the protocol can be used 10
cheek for races in a program that is executed in a canonical serial order, Executing programe in a
cunonical serial order while debugging, is often convenient an it provides the user with deterministic
behavior that simplifies the task of determining the origin of variable values that indirectly causea
a data ruwee to oceur,

If no race s detected inan execution, then no race will oceur in any execution of the program
for that particular isput and the program is guaranteed 1o be deterministic for that mput. The key
insight behind this observation is that the u|||.\' thing that could canse an execution for the given
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Time
Algorithm Space Thread Creation & | Per Access
Termination
Task Recycling O(VT + T?#) o) o)
EH Labeling | O(VT + min(BN,VTN)) O(N) O(NT)
OS Labeling O(V + min(BN,VN)) O(N) O(N)

Table 1: ¢ uparison of Worst Case Time and Space Requirements.

input to behave differently would be if there were some form of non-determinism present. Data
races are the sole source of non-determinism in programs that have nested fork-join parallelism but
no other inter-thread synchronization. Therefore, if no data race is detected in one execution of
such a program for a given input, then no data race can exist in any execution for that input.

Practical implementations of the checkread and checkwrite protocols described in this sec-
tion must respect the underlying assumptions upon which the correctness pronfs are based. In
particular, all updates and inspections of an access history by the checkread and checkwrite
protocols must be coordinated. Without coordinating updates to a variable’s access history, the
checkread protocol could not correctly maintain the invariants with respect to Ry and Ry3. The
simplest coordination strategy is enforcing mutually exclusive access. Such coordination ~ould
cause bottlenecks if there is pervasive rcad sharing of a variable among concurrent threads. By
using dependence analysis to limit monitoring instrumentation to only the cases in which read-
write conflicts seem imminent, hopefully such botilenecks could be avoided. Other less restrictive
coordination strategies appear possible, but it would be necessary to relax some of the invariants
maintained by the protocols and show that data races are guaranteed to be detected even with
relaxed invariants.

5 Analysis

In this section we examine the space and time complexity of using our access history protocol with
Offset-Span lubels and compare it to the complexity of the protocols described in the literature
for English-Hebrew Labeling [11] and Task Recycling [6, 7). To be consistent with the notation of
Dinning and Schonberg [6), we present our analysis in terms of the following parameters:

T - maximum logical concurrency

V number of monitored shared variables
N maxitmum level of fork-join nesting

B total number of threads in an execution

Table 1 compares the worst case time and space complexity of the earlier access history methods,
English Hebrew Labeling and ‘Task Recyceling, with the worst case time and space complexity of
our access history protocol using Offset Span labels,

For the EN Labeling and Task Recveling accons history protocols described in the literature,
cach monitored variable has an access history that may contain as many as 7" thread names il the
variable is accessed by cach thread that is active when the program attains its maximum logical
concurrency; this leads to the V7 term in the their space complexition, The second term in the
space complexity of ‘Task Reeyeling arines because eic i thread has an associated “parent veetor™ of
length 77 thatis used to summarize the concurreney relationships between a thread and ity ancestors,



Since T threads may be active simultaneously, T2 space may be needed. In EH Labeling, the size
of an EH label for a thread is proportional to the nesting depth of fork-join constructs which is
bounded by N. (This analysis assumes the existence of an effective heuristic alluded to by Dinning
and Schonberg [7, p. 4] that limits the length of labels to O(N). Without the heuristic, labels can
grow arbitrarily long. A description of the heuristic was unavailable to the author of this paper at
the time of this publication.) If access histories store pointers to EH labels, each label is at most of
length N, and there can be at most VT distinct pointers to labels. If reference counting garbage
collection is used, the maximum space used to store EH labels is bounded by O(VTN). U ihe
number of threads in a program execution B is less than VT, then this places a tighter bound on
the space to store the labels of O(BN) since at most one label per thread needs to be stored.

In the expression for the worst-case space complexity for our new access history protocol using
Offset-Span labels, the first term accounts for the constant size access history for each monitored
variable. The second term reflects the space needed to store OS labels. If access histories store
pointers to OS labels, each label is at most of length N, and there can be at most O(V') distinct
pointers to OS labels. If reference counting garbage collection is used, the maximum space used to
store OS labels is bounded by O(V' N ). If the number of threads in a program execution B is less
than V', then this places a tighter bound on the space to store the labels of O( BN ) eince at most
one label per thread needs to be stored.

The worst case time to verify whether an individual access to a variable is involved in a data race
is O(TN ) for the EH Labeling protocol since an access may need to be compared against T entries
in the varia.le's access history and each comparison may take O(N ) time. For Task Recycling, the
worst case time to verify whether an individual access to a variable is involved in a data race is
O(T): the parent vector representation in Task Recycling enables access comparisons in constant
time, but a comparison may be needed for cach of I' entrics in a variable’s access history. For our
new access history protocol with Offset-Span labels, the corresponding time is only O(N) since the
label for the current access need only be compared with a constant number of other labels.

The wor :t-case time overhead at thread creation for E and O8 labeling is O(N ) for assignment
of a label o7 size O(N) to a thread, Tusk Recyeliog incurs worst-case overhead of O(7T') at thread
creation sn | termination since a parent vector of size ()(7') may need to be created for a new
thread, an.d when theads meet at a join, their parent vectors of size O(T') must be merged.

Since T is typically greater than 2V, using our new access protocol represents a significan
worst-case savings in both space and time over earlier protocols for on-the-fly detection of data
TACeS,

6 Status and Future Work

A prototype system for dependence based instrumentatior of potential data races in parallel For
TRAN programs has been developed as part of the debugging system in the ParaScope Programming
Environment [4]. The instrumentation system inserts calls to a run time library that uses Offset
Span Labeling and the access history protocol deseribed in section 4. The prototype instromenta
tion system currently haudlen simple programs with loop based parallelism, Currently, procedure
cally from within parallel loops are not handied. Ongoing, implementation efforts are focused on
extending interprocedural analysis in ParaScope so that the dependence based instrumentation can
interprocedurally propagate requirements for instrumentation into procedures called from within
parallel constructa, Onee the interprocedural instrumentation systemn is complete, the on the fly
debugging system will be useful for mote than toy programs,

Future work includes extonding, the access history protocol and proofs to haudle sepgular patterns



of synchronization such as sections in DOACROSS loops and the PCF FORTRAN generalization of
this construct: ordered sequence synchronization. Preliminary indications are that the protocols
will extend naturally to accommodate this larger class of programs.
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Block-Structured Control
of Parallel Tracing:
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Despite the increasing attention being given to the design and implementation of parallel de-
buggers (see [19, 12]), users continue to be dissatisfied [15, 13, 3]. Some of the criticisms refiect the
technological difficulties of monitoring paralle! execution in nonn-intrusive ways, or of reproducing
behavior in an inherently unstable environment. Other complaints, however, address a more funda-
mental problem: providing execution information that relates meaningfully to program development
activities.

Techniques for portraying parallel behavior graphically have been the focus of a number of recent
research eflorts [18, 20]. To date, however, little attention has been given to the problem of how
dehugging tools should support interaction with the user. Existing breakpoint-style debuggers (e.g.,
Intel's IPD [10]), CONVEX’'s CXdb [1], or Sequent’s Pdbx {23]) rely on extensions of serial debugger
technology. The user manually specifies where execution should be halted or monitored, typically
through breakpoints (positions in the instruction stream where processing should halt), watchpoints
(data elements whose values should be monitored, with execution halting when the value is touched
or if a specific condition is met), and/or tracepoints (instruction or data locations whose access
should trigger generation of & message). Trace-hased tools, as the term indicates, rely on just
the tracepoint mechanism (e.g., the trace analysis facilities of SCHEDULE (2], GMAT [22], IBM's
Parallel Fortran [8], CONVEX's CXpa (6], or Paragraph [7]); during execution, meassages are logged
to a trace file for real-time or post-mortein analysis. The disadvantage of this approach is that
the user cannot interact with or alter program erecution On Lhe other hand, the software hooks
required to implement tracing are relatively straightforward, and can be inserted automatically by
the compiler (e.g., CXpa) or in a preprocessing s'ep (e.g.,, SCHEDULE).

Regardless of the mechanism used, the user is confronted with an all-or-nothing support situation.
If monitoring is controlled by automatic instrumentation or features in the run-tiine library, copious
amounts of data are generated, much of which may be irrelevant to the programming taak at hand.
In contrast, manual control over monitoring requires that the user specify where information should

VA portion of this research was conducted using the Cornell National Supercomputer Facility, a resource of the
Center for Theory and Simulation in Science and Fngireering, which receives major funding from the National Science
Foundation and IBM Corporation. The work was carried out as part of a joint development study with IBM Pala
Alto Scientific Center



be gathered; this entails predicting what data will be useful and at what locations, and then either
adding new statemnents to the program (which will need tc be eliminated later) or issuing commands
at run-time (which may be difficult to duplicate in a subeequent session).

This paper suggests a compromise ap; roach, whereby the user and tool collaborate to establish
an optimal level of instrumentation for a given program and tracing task. The user indicates very
generally the type of information desired and the areas of the program for which trace records
should be generated, by annotating the block-structured crganization already present in the source
code. Since the specifications are tied unambiguously to program structure, the appropriate software
hooks can then be inserted by a compiler, preprocessing tool, or the debugger itself.! Although the
techniques are described in terms of tracing tools, they could alse be employed in breakpoint-style
debuggers if rudimentary source-code anaiysis facilities were availaole.

The proposed strategy explote ihree concepts which have been largely neglected in the past, but
could go a long way in making debugging tools more palatable to the user community:

¢ Flexible ways to limit the potentially huge amounts of data generated during execution of a
scientific application.

o Clear correlation of dynamic/multi-stream behavior with the static./single-stream program
manipulated by the user.

e Adaptation to changing requirements 'uring the program development cycle.

The scheme is based on user-defincd event regions, used to establish the portions of execution during
which events are reported, and event levels, which determine the types of events to be monitored
within a region. The two orthogonal controls interact to provide flexible control over monitoring.
The advantages of this approach derive from its clear relationship to prngram structure. The model
for specifying trace output matches that us:d for program code, so it is easier for the programmer to
arrive at a useful trace. The reduction in the number of event records also makes trace interpretation
faster.

The discussion begins with an analysis of the requirements for program behavior information at
different points in the development cycle. This establishes the need for independent levels of trace
support, outlined in the next section. The section which follows describes how the scope of tracing
can be varied to fit cyclic patterns of debuyming and program analysis. By way of example, the
region and level mechanisms ere applied to a program writtez in PCF Fortran [14].

Requirements for Program Behavior information

As shown in Figure 1, the uevelopment cycle for parallel applications typically begins with
a correct serial version [168]. The programmer has a general idea of which portions of the program
might be performed in parallel, but it is not ilways clear if parallclisation will be cost-effective.
With the help of a profiling tool or hand-coded instrumentation, timing statistics are gathered to
determine which of those areas are sufficiently compute-intennive to warrant the effort of restructur-

"This rnuld‘l}ﬁl h—e lr;limplilhl;d l.-hr:-u.; pusiprocessing (e.g., application of a filter 1o the trace file). As the
eflects would be tranasparent, no specific implementation mechanism is deacribed here.



Correct serial version
1. Identify candidates for parallelisation
2. Parallelize candidate portions of code
3. Debug parallelised code
Working parallel version
4. Evaluate performance of parallel code
5. Tune performance of parallel code
6. Debug tuned code
7. Evaluate performance of tuned code

Acceptable parallel version

Figure 1. Development Cycle for Parallel Scientific Applications

ing. Parallelisation then begins. As new structures are added to the program and old ones modified,
the code is tested to determine if the results match those obtained from the serial baseline. When
they diverge, a period of cyclic debugging intervenes. This alternation of testing and debugging
is necessary even when software tools have been used to guide parallelisation activities. Once a
functional parallel version hes been achieved, its performance can be tuned to maximise speedup.
The tuning process often results in the discovery of additional bugs, precipitating new bouts of de-
bugging activities. Eventually, the programmer is satisfied that further improvements are impossible
or unprofitable.

Execution tracing, as a source of dynamic information on program behavior, is potentially useful
at all stages in the developrent cycle. Although certain steps are repeated more than once (as
shown in Figure 1), they may L grouped into four categories of activities: performance profiling,
debugging, benchmarking, and performance tuning.

Prior to initisting parallelisation, the programmer needs a high-level profile of computational
activities in order to determine where to focus eflorts. The principal requirement here is timing
information, which can be used to confirm or contradict intuitive notions of program hot-spots. As
a minimum, entry to and exit from all user-supplied program unite should be reported so that timing
statistics can be calculated and compared.

As parallelism is introduced, run-time errors will surfece. In debugging, the primary concern i to
determine where program behavior does not match that expected by the programmer. Because the
program is thought of as a sequence of manipulations on data structures, such as multi- dimensional
arrayn, the programmer assures correctness by tracking changes to those structures. In parallel
sections of code, this activity takes on an added dimension: tracking the order in which parallel
processes access the data. Not only must value changes be noted, but aiso the source of ench change



(i.e., which procesas made it and at what point in its activities). Determining access order often
entails the analysis of synchronisation events, such as which process entered a critical section last.

Once all obvious bugs have been eliminated, tracing can be used to determine the effective-
nems of paralielisation efforts in terms of performance. Benchmarking requires a finer granularity
than subprogram profiling. Activities within the parallelised section of code are timed, to verify
that parallelism has achieved some degree of speedup and to ascertain the possibilities for further
improvement. Programmers are concerned with quantifying the execution cost or benefit of each
parallelising transformation. Moreover, they draw a distinction between the syatem overhead in-
volved in starting up and terminating processs (referred to here as system costs) versus that incurred
when proceses are idle because of barrier waits, failure to obtain locks, etc. (waiting costs). The
former represents the fixed costs associated with parallelism, while the latter can be manipulated
~— at least indirectly — by the programmer.

During tuning, the primary concern is to identify situations which can be improved by code
manipulation. The programmer needs detailed information on load balancing: the order in which
work is distributed, time required to distribute shared data, time spent by each process at a barrier,
etc. Since the programmer must rely on this data to fine-tune the degree of parallelism, the specifics
of which work (i.e., which loop iterations or other subtasks) was assigned to each process is also
important. Finally, as tuning modifications are made to the source code, additional benchmarking
is needed to verify that the timings improved or to compare the effects of different tuning strategies.

Matching Trace Information to Programming Activities

A recent survey of the trace facilities available with IBM's Parallel and Clustered Fortran compil-
ers (8, 9] revealed that users are remarkably unaware of the potential of parallel program traces [21].
Many programmers, for example, who employed traces for benchmarking or performance tuning
activities had never considered using them to isolate program errors. Others underestimated their
reporting capabilities, resorting to hand-coded instrumentation to acquire data already available
(albeit obscured) in the trace files. This situation results in a great deai of unnecessary programmer
effort and may introduce new sources of error which are extremely difficult to isolate.

The extremely large quantities of data generated for a full program trace are daunting to most
programmers. In some cases, there are mechanisms available to reduce trace volume; CXpa, for
example, allows selective profiling at the routine, loop, or parallel region level [6], while IBM's
trace facility offers nine levels in a number of permutations [8, 9]. Users claim, however, that the
mechanisms are unusabie, either because they are inappropriate for the need at hand or hecause
their use is incomprehensible or inconsistent. Moreover, the type of information reported in most
traces reflects the requirements of systems programmers, not scientific users. Much of the data
reflects system factors that are irrelevaut to program development, while common programming
needs are left unsatisfied. Consequently, existing tools are under-utilised and under-valued by the
user community.

How can the situation be improved? The first step is to organise the type of data reported in
order to correspond with typical programming activities. In our block-structured approach, the type



of trace records generated is controlled through trace levels. A level defines which execution-time
events are of interest and should be reported; it ther~‘ore functions as a masking mechanism to

reduce tue amount of trace output. We propose five lu/els, reflecting the most common uses for
traces:

e to establish timings for entry to and exit from subprogram units (PROFILE)
e to isolate the portion of the program where an error has occurred (DEBUG!)
@ to identify the error and determine the efficacy of repairs (DEBUG2)

e to tune program performance for maximum efficiency (TUNE)

e to benchmark and compare program performance (BENCAMARK)

Normally, one level will apply to the entire program, reflecting the activity in which the programmer
is engaged, be it debugging, tuning, or performance analysis. In some cases, bowever, it may be
desirable to combine multiple levels during a single execution. The effects of each level are described
in relation to typical parallel language constructs, amplified by the concept of user-defined trace
messages (arbitrary text emitted in the trace Zle at the specification of the user).

The results of applying levels are illustrated by a brief program for the computation of x with the
rectangle rule (Figure 2), written in PCF Fortran [14] and adapted from the example in [11]. The
trace output shown is generalised and does not reflect any particular trace format. The columns
present timestamp, process ID, source code location, and minimal messages, respectively; such
information is compatible with most existing formats, as well as the suggestions for a standardized
trace format summarised in [17)].

PROFILE: This level results in a minimal oumber of trace records (Figure 3). It is in-
tended primarily for summarising the amount of time spent in each program unit (main pro-
gram/subroutine/function, or finer-grained blocks of code), as ar indication of where parallelizsation
or improvement efforts should be directed. The flow of program control into and out of each unit
is reported in the trace file. User-defined trace messages may identify the organisation of logical
activities within a unit, so these are recorded as well.

DEBUGT1: This also results in a restricted number of trace records (Figure 3), and is particularly
useful juring initial attempts to localise a program error. Only events marking the very general
progress — or lack of progress — of parallelism are reported. Thus, the user is able to obtain an
overview of which portions of the program executed and in what general order they occurred.

For parallel loops, the trace records include each process’s arrival at the start and end of the
construct, plus any waits caused by unsuccessful attempts to enter critical sections. Similar informa-
tion is reported for parallel sections, except that waita occur due to the explicit ordering of sibling
sections. User manipulation of synchronisers (such as lock and event variables) is also reported in
terms of unsuccessful attempts which resulted in waits. “This information gives the programmer
an extremely rough idea of the extent to which contention may be affecting program behavior.
Subroutine-level parallelism is also traced in terms of coarse-grained activities: the start and end of
each process’s work, and the satisfaction of barrier synchronisation. Access to shared variables is
reported only in the most general way, via lista identifying which ones were sccessed by each process.
Entry to and exit from subprogram (whether the invocations were serial or in parallel) continue to



1 PROGRAM PI

2 DO I=1,3

3 READ(»,») BRECS

4 CALL INTEG(NRECS,RN)

5 VRITE(*,*) 'Jumber of rectangles:',NRECS
(] WRITE(*,*) 'Number of processes available:’,MPRTOT
7 VRITE(+,*) ’Approximation:’,RE

8 END DO

-] END
10 SUBROUTINE INTEG(N,SUM)

11 GATE ADDUP GUARDS(SUN)

12 SUM = 0.0
13 UNLOCK (ADDUF)

C parallel region and scoping declarations
14 PARALLEL
16 PRIVATE(PSUM,E,X)

C parallel initializations (redundantly executed, once per process)
16 PSUM = 0.0
17 H=1.0/%

C parallel work (groups of iterations executed by each process)
18 PDDO INDEX=1,N

19 I = (INDEX-0.5)*H
20 PSUM = PSUM + 4 0/(1.0+X+X)
21 END PDO
C reduction executed once per process and one process at a time
22 CRITICA". SECTION (ADDUP)
23 SUM = SUN + H«PSUM
24 END CRITICAL SECTION (ADDUP)
26 END PARALLEL
26 RETURN
27 END

Figure 2. Ezample PCF-Fortran Program

be t-aced in order to indicate the general flow of program control. User-dehned trace messages are
recorded as weil.

DEBUG2: Like DEBUG], this level is intended to facilitate the isolation and correction of
program errors. It provides the level of detail most likely to reveal the sources of behavioral anomalies
(Figure 4), but does not include performance-related information. Since DEBUG2 has the potential
for generating considerable volume, it will be most useful when restricted to small portions of the
program, such as those suspected (through analysis of previous DEBUG1-level output) of containing
anomnalies or those where code modifications have been made.

Tracing for a parallel construct reflects its progression through execution: construct entry, priva-
tisation of variables, start of each process’s work, assignment of iteration groups or sections, end of
each process’s work, and construct exit when the barrier is satisfied. When critical section occurs,
detailed information on this is reported as well, including successful and unsuccessful attemptn to



PROFILE level DEBUG1 level

00000000 1 1 BEGIN PROGRAN 00000000 1 1 BEGIN PROGRANM
00000041 1 10 ENTER INTEG 00000041 1 10 ENTER INTEG
00000249 1 26 EXIT INTEG 00000042 1 14 SHARED (SUM,ADDUP)
00000321 1 10 ENTER IFTEG 00000042 2 14 SHARED {SUM,ADDUP)
00000549 1 26 EXIT INTEG 00000043 3 14 SEARED (SUM,ADDUP)
00000630 1 10 ENTER INTEC 00000C47 2 18 BEGIN PDO
00000812 1 26 EXIT INTEG 00000048 1 18 BEGIN PDO
00000896 1 © END PROGRAM 00000046 3 18 BEGIN PDO

00000202 1 21 EXD PDO

00000203 3 21 END PDO

00000204 3 22 WAIT CRIT SECT

00000226 2 21 END PDO

00000246 1 26 EXIT INTEG

00000321 1 10 ENTER INTEG

00000896 1 9 END PROGRAM

Figure 3. Trace Output for PROFILE and DEBUG! Levels

obtain access, as well as exit from the section. The level of detail is similar for parallel sections, ex-
cept that process suspension and resumption, due 10 ordered execution, is reflected. All user-defined
synchroniser operations are now reported in the trace, whether or not a delay was involved. Thus,
the creation, termination, and freeing of a lock are reported as well as attempts to gain control of it.
This fine level of granularity allows the programmer to observe every transaction on synchronisc.s.
Subroutine-level parallelism is also traced at the lowest level manipulatable by the programmer:
process creation and termination, start and end of work, arrival at barriers, and barrier satis action.
Updates and accesses to shared data are reported in terms of the value assigned or read. Finaliy,
subprogram entry/exit and user-defined trace messages are still recorded.

TUNE: Unlike the DEBUG levels, TUNE is intended for programs which function correctly (or
appear to function cor. >ctly). This level reports on program performance (Figure 4), specifically
those aspects of performance which can be tuned by the programmer to achieve maximum efliciency.
Its focus, therefore, is the “variable” overhead due to poor load balancing, lock contention, etc.
Information on the “fixed” coets incurred by the system during process initiation and cleanup will
be reported at the BENCHMARK level.

The events of interest for parallel loop and cases constructs include the start of the construct,
start of each process’s work, assignm~at of iteration groups or cases, termination of each procem's
work, and end of the construct. From this inforination, the prog *smmer (or a trace analysis tool)
can determine tc. what =xtent “slow” or improperly balanced processes are provokng long barrier
waits. He or she can also observe the effects cf attempts to tune loop/sections performance by
controlling iteration groups, etc. When the construct includes synchronisation constructs (critical
section or ordered case execution), this is traced 100, as described below for synchronisers The
record produced for subroutine-level paraileliam inc'ude the atart and end of each procesa’s work,
arrival at barriers, and barrier satisfartion. In addition, the distribution of shared data is reported



00000000 1 1 BEGIN PROGRAM

00000041 1 10 ENTER IFNTEG 00000210 3 22 ENTER CRIT SECT
00000042 1 11 GATE (ADDUP) 00000211 1 25 WAIT BARRIER
00000044 1 12 SHARED (SUM = 0.0) 00000214 3 23 SHARED (SUM = 2.0135)
00000044 1 13 UWLOCK (ADDUP) 00000217 3 24 EXIT CRIT SECT
00000045 1 156 PRIVATE (PSUM,E,X,INDEX) 00000218 3 25 VWAIT BARRIER
00000047 2 18 BEGIN PDO (IWDEX = 1,10) 00000226 2 21 E¥D PDO

00000048 1 18 BEGIN PDO (IWDEX = 11,20) 00000227 2 22 ENTER CRIT SECT
00000048 3 18 BEGIN PDO (INDEX = 21,30) 00700231 2 23 SHARED (SUM = 3.1416)
00000176 2 18 BEGIN PDO (INDEX = 31,33) 00000237 2 24 EXIT CRIT SECT
00000202 1 21 END PDO 00000238 2 25 VAIT BARRIER
00000203 1 22 ENTER CRIT SECT 00000242 1 26 PASS BARRIER
00000203 3 21 END PDO 00000249 1 26 EXIT INTEG

00000206 1 23 SBARED (SUM = 0.7880) 00000321 1 10 ENTER INTEG

00000207 3 22 WAIT CRIT SECT -

00000209 1 24 EXIT CRIT SECT 00000896 1 © END PROGRAM

Figure §. Trace Output for DEBUG?

80 that the programmer can observe the delays associated with data distribution.

For user-defined synchronisers, tracing at this level reports all accesses, but not creation/termina-
tion (which cannot be tuned for efficiency). Successful and unsuccessful atiempts to obtain locks, lock
releases, event posting, and event waits are included. The programmer thus can observe first-hund
the causes and costs of synchroniser contention. Entry to and exit from functions and subroutines
are not reported at this level, bul user-defined trace messages are included for the convenience of
programmers who use this technique to mark or measure general program activities.

BENCHMARK: The benchmarking level is intended to provide information that will be useful
in the analysis of r ystem (as opposed to program) performance. Its events report on systems-related
ove head such as process start-up time. The data will also be of interest to programmers who wish
to compare the performance of alternative program versions in detail — for example, o determine
where the cost breakofl point is between loop-level and subroutine-level parallelism for a particular
section of code.

Tracing for parallel loop or cases constructs now reflecta the system startup time incurred between
entry to the construct and the initiation of process work, as well any lag time between the arrival of
the last process at the barrier and final barrier satisfaction. The {ull set of trace records therefore
includes construct start, procesa creation, start of process’s work, end of process’s work, and each
process's arrival at construct end. For user-defined procesaes and subroutine-level parallelism, tracing
records the system overhead for process managerent activities. These include the amount of time
spent originating and terminating proccsses, as well as the time elapsed between arrival of the laat
process at a barrier and barrier satisfaction. The tracing of lock and event synchronisations is
identical to that performed under TUNE, since it allows the determination of how much system
overhead time elapses between, say, the release of a lock and the re-activation of a waiting procean.
Again subprogram entry /exit are ignored, but any user delined trace measages are reported



TUNE level BENCEMARK level

00000000 1 1 BEGIN PROGRAM 00000000 1 1 BEGIN PROGRAM
0000004z 1 12 SHARED (SUM,ADDUP) 00000042 1 12 SEARED (SUM,ADDUP)
00000046 1 15 PRIVATE (PSUM,H,X,INDEX) 00000044 3 14 BEGIN PARALLEL
00000047 2 18 BEGIN PDO (INDEX = 1,10) 00000046 3 1B PRIVATE (PSUM,H,X,INDEX)
00000048 1 18 BEGIN PDO (INDEX = 11,20) 00000046 1 18 BEGIN PDO
00000048 3 18 BEGIN PDO (INDEX = 21,30) 00000047 2 18 DISPATCE PDO
00000176 2 18 BEGIN PDO (INDEX = 31,33) 00000048 1 18 DISPATCHE PDO
00000202 1 21 END PDO 00000048 3 18 DISPATCH PDO
00000203 1 22 OBTAIN (ADDUP) 00000170 2 21 COMPLETE PDO
00000203 3 21 END PDO 00000176 2 18 DISPATCH PDO
00000207 3 22 TRY (ADDUF) 00000196 1 21 COMPLETE PDO
00000209 1 24 RELEASE (ADDUP) 00000197 3 21 COMPLETE PDO
00000210 3 22 OBTAIN (ADDUP) 00000202 1 21 DONE PDO
00000211 1 25 WAIT BARRIER 00000202 1 22 OBTAIN (ADDUP)
00000217 83 24 RELEASE (ADDUP) 00000203 1 22 ENTER CRIT SECT
00000218 3 256 WAIT BARRIER 00000203 3 21 DONE PDO
006000226 2 21 END PDO 00000206 3 22 TRY (ADDUP)
00000227 2 22 OBTAIN (ADDUP) 00000207 3 22 WAIT CRIT SECT
00000237 2 24 LELEASE (ADDUP) 00000208 1 24 RELEASE (ADDUP)
00000238 2 2L JAIT BARRIER 00000200 1 24 EJIT CRIT SECT
00000242 1 2b PASS BARRIER 00000209 2 22 OBTAIN (ADDUP)
00000322 1 12 SHARED (SUM,ADDUP) 00000210 3 22 ENTER CRIT SECT
veu 00000210 1 26 TEST BARRIER
000008986 1 ® END PROGRAM 00000211 1 26 WAIT BARRIER

00000866 1 © END PROGRAM

Figure {. Trace Outpul for TUNE and BENCHMARK

Restricting the Scope of Ana'ysis Information

Tracing levels alone will not reduce to manageuble proportions the amount of trace data
generated by scientific applications. Recearchers at CONVEX, for example, found that a 10-minute
program run generated 1.3 gigabytes of profiling statistics [6]. Organizing levels in *2iins of program
development activities decreases the number of records that are extraneous to the task at hand, but
it should be clear that large traces will atill result.

One aspect of prograrn development that merits closer attention in this respect is the hierarchical
apptoach employed by most users. Empirical studies suggeat that programmers “funnel in” on the
code, starting with a high-level view of overall program behavior and progressively moving to more
specific levaln of detail [4, b]. This procedure, which allows the programmer to put off complex issues
as long an possible, mimics the top-down approach to program development. ‘I'ake, for example, the
way hand.coded instrumentation is added to a program to detect the source of an errot (Figure
2). The programmer first investigates general behavior at the level of subprogeam unita. ‘The focun
in then narrowed to a particular block of code Finally, code muodification in performed at the

level of individual atatementa A similar procedure in followed for benchimatking and performance



1. Identify general area of trouble
2. Examine code
3. Add coarse-grained instrumentation
4. Examine results
5. Add finer-grained instrumentation
6. Examine results

7. Modify code

Figure 2. Hierarchical Approach in Hand-coded Debdugging

improvernent activities. In pre-improvement benchmarking, for example, the first order of business is
determining which subprogram units account for the greatest proportion of execution time. Within
those units, analysis is then refined to pinpoint the areas which have the greatest potential for
yielding improvements.

To support this a;proach, a second mechaniim interacts orthogonally with the trace level con-
tiols. Trace regions limit the scope of tracing, or the period of time during which event records
are generated. Because the program already represents a block-structured expression of problem
logic, it makes sense that tracing scope relate directly to source code organisation. A region, there-
fore, corresponds to a subprogram unit (SUBPROGRAM and IGNORE controls), a block construct
(CONSTRUCT), or an arbitrary area (BEGIN and END). The first three control static (lexical)
scope, while the other two delimit dynamic regions. The number and nature of the regions were
established through extensive interviews witi, scientific users [21].

Each type of region is described below. For convenience, the controls are shown in the form of
comnpiler or preprocessor directives. It is intended, however, that regions be specified graphically
through the use of a program edito: or other interactive tool. Facilities for highlighting regions with
shading or color will allow the user to pinpoint the areas of interest quickly and accurately. They
will also emphasise the distinction between “step-over” (static) and “step-down” (dynamic) tracing
of subordinate program modules.

SUBPROGRAM: The programmer uses this region to indicate interest in a particular subpro-
gram or portions thereof. Tracing will be active during the execution of all statements within the
region (in this case, aftet the occurrence of the TSSUBPROGRAM directive). Its effect is limited to
the immediate static (lexical) scope; that is, tracing is deactivated at calla to subordinate functions
or subroutines. For example, the region defined in Figure 6 begins in the middle of the subroutine
and encompasses all subsequent statements, but does not “step down” to include the code executed
by the invocation of INITGLX.

CONSTRUCT: This region provides finer granularity than SUBPROGRAM, corresponding
to the execution of a program block. Block constructs include all block-structured eleruents in the
language, but typically only parallel biocke (e.g., parallel loopn and sections) are of interent for
tracing. Since the programmer uses CONSTRUCT to indicate intereat in a particular construct or
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SUBROUTINE INIT(SUM,N) SUBROUTINE INIT(SUM,E)

SUM = 0.0 SUM = 0.0
C$ T$SUBPROGRAM C$ T$CONSTRUCT
PARALLEL DO IPLANE=1,§ PARALLEL DO IPLANE=1,N
PRIVATE (PSUN) PRIVATE(PSUM)
PSUNM = [INITGLX (IPLANE,PSUM PSUM =| INITGLX(IPLANE,PSUN)
END PARALLEL DO END PARALLEL DO 1
UNLOCK (ADDUP) UNLOCK (ADDUP)
RETURN RETURN
END END

Figure 6. Ezamples of SUBROUTINE and CONSTRUCT Regiona.

group of constructs, its effect is limited to the immediate static scope. In the example of Figure
6, tracing begins just prior to execution of the PARALLEL DO and continues until the loop has
terminated; it is deactivated during the invocation of INITGLX.

BEGIN and END: The user can also define arbitrary regions that are not restricted to con-
struct or subprogram boundaries, and that reflect the dynamic flow of program control through
subprograms. A BEGIN/END region effectively toggles tracing on and off, as shown in Figure 7.
Note that in this rase, trace records are generated from the start of the parallel loop until after
the UNLOCK operation, including during all subprograms invoked within the scope of the region
(INITGLX and any subordinates it might have). Due to the neating of subprograms during execu-
tion, a previous BEGIN/END region may be active when a new region is encountered, although it
will be more common that regions are closed for the duration of subordinate routines, as described

below.
SUBROUTINE INIT(SUM,N) SUBROUTINE INIT(SUM,K)
SUN = 0.0 PSUM = INITGLX(IPLANE,PSUM)
C$ TOBEGIN Cee
PARALLEL DO IPLANE=~1,X END
PRIVATE(PSUNM)
PSUM = INITGLX(IPLANE,PSUM) SUBROUTINE INITGLX(I,SUM)
END PARALLEL DO C$ TS$IGEORE
URLOCK (ADDUP) PARALLEL DO J=1,1
C8 TOEND -
e EED PARALLEL DO
RETURX RETURN
END EED

Figure 7. Esamples of BEGIN/END and IGNORE Regions.
IGNORE: Because user-delimited regions transcend invocation boundaries, they have the po

tential for generating considerable amounts of trace data, An IGNORE region therefore oflern o
convenient mechanism for temporarily closing a region for the duration of a subprogram. By spec
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ifying that a subprogram should be ignored, the programmer disables all tracing at that level of
invocation; tracing is resurned after return to the caller. In Figure 7, any region which was open at
the calling site to INITGLX will be temporarily closed during execution of that subroutine. The
scope of the IGNORE region is static, so tracing will again become active within any of its sub-
ordinate routines. The effects of this region are antithetical to those of SUBPROGRAM; where
SUBPROGRAM initiates statically-scoped tracing at the indicated point and continues until the
end of the subprogram unit, IGNORE disables tracing for the same area.

It is also possible to combine regions of different types. Their interaction provides a tight control
over exactly which portions of code are traced. Returning to the CONSTRUCT region in Figure
6, for example, the specification of a SUBPROGRAM region containing INITGLX would have the
effect of suppressing all records except those in the subroutine or in the parallel loop.

Conclusions

Structured programming techniques offer the scientific programmer ways to make source code
structure reflect the underlying design logic. As a result, it has become commonplace for users to
apply cyclic and hierarchical approaches in code development. Block-structured tracing capitalises
on this observation. It allows the programmer to control the number and type of run-time events in
a structured fashion that reflects both source code organisation and changing requirements during
the program development cycle.

The cyclic and hierarchical approaches interact throughout the parallel program cycle. Most
programmers develop or parallelise their applications one section at a time. A [ull cycle — converting
code to parallel form, testing and debugging it, benchmarking the results, then fine-tuning it it
to achieve the best possible performance — is applied to a subportion of the program. Once it is
complete, the programiner moves on to another area, typically returning only if a latent bug emerges
or if later work generates a new idea for performance improvement. This suggests that tracing tools
should provide separate controls for (a) indicating the program area of current interest and (b)
identifying what type of information should be reported for that area. The controls should be easy
to specify and easy to change.

The orthogonal trace and region mechanisms provide direct support for this approach. Hier-
archical patterns indicate that at any stage during prugram development, a single trace region or
collection of trace regions is likely to be of interest for a length of time. For that reason, the region
mechanism is potentially fine-grained, while level provides a simple, coarser control. Cyclic patterns,
on the other hand, indicate that varying collections of trace data will be desired for the region an
the user progresses through different programming tasks. By organising trace events according to
typical activities, the level mechanism eliminates the tedium of discarding irrelevant records and
clarifies the contribution of each record type. Together, the two controls interact to make parallel
debugging tools easier and more effective for user applications.
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Abstract

As part of a debugger project at Rice University, we wanted to provide
support within our debugger for such operations as noticing modifications to
a memory location. Efficiency concerns led us to choose the technique of
automatically applying small machine code patches to the program.

We have experimented with this type of program instrumentation and have
demonstrated the feasibility of using it for the task of watching modifications
to memory. Our use of patches to monitor all stores to memory is unusual,
because of the large number of patches involved. In detail, we insert a
machine code patch for every machine instruction that may modify the
memory locations being watched. This action does incur significant costs in
program text space and running time, but provides invaluable functionality
within the debugger. Our method is especially appealing if appropriate
alternative support for data breakpoints is not provided by the operating
system or hardware.

Introduction

We are implementing a debugger at Rice University. In addition to the more
traditional operations such as location breakpoints of various kinds, we want
this debugger to have some support for data breakpomtq That is, we want to
be able to stop when some particular variable acquires a value. At a basic
level, to implement data breakpoints without compiler support, the debugger
must somchow notice when a machine instruction modifies any of the
memory locations being watched.

Our project runs under the Unix* Operating System, and so the obvious first
choice when implementing the debugger operations is to use the breakpoint
facility provided by it. These routines, a collection of operations grouped
under the ptrace() system call, work well enough when setting a simple
breakpoint at some location in the program. However, they are far too slow
for intensive, non-interactive use. Using this process tracing facility, the most
obvious method for monitoring changes to process memory is to execute the
program in short steps, making sure to stop the process just before each store,

*Urinis a trademark of AT&'T Bell Laboratories.



and inspect the location being modified. Debuggers using this
implementation can slow the monitored process down by a factor of up to
20,000. For a program run of any substantial duration, when faced with such
a slowdown, it is usually quicker and almost as effective to simply add
printing and assertions to the source code, and recompile.

To avoid the ptrace system call, we instead construct an automated way to
insert code before every store instruction, and before every other kind of
instruction that could modify memory. The inserted code will check the
address to which the store location will write, against a table of memory
locations being monitored. If the address is in the table, some special action
will occur, such as pausing the program and signaling the debugger.
Otherwise, the program will proceed as it normally would have, without the
inserted code.

For our project, instead of actually inserting code before each store

instruction, we put the new code elsewhere and connect this new code to the
patch point with branches. Typically, one instruction at the patch point,
usually the instruction that modifies memory, must be overwritten by a
branch to the new code. This instruction is relocated to a slot in the new code.
At the end of the new code, a branch back to the patch point completes the
installation of the patch. This is not a new technique, but its utility is often
overlooked. Our design is that of Kessler[Kessler], though some engineering
is needed to make our application of this technique appealing.

Architectural Requirements

This method relies on the ability to confidently install patches to machine
code, ideally even without significant support from the compiler. There are
several restrictions resulting from the requirement that machine code patches
are being used. In short, our method works best on RISC architectures, on
systems that have an obvious separation between machine code and data.

Patching is difficult if machine instructions can be of different lengths. A
uniform size of machine instruction is the easiest to handle, when inserting
patches. The uniform instruction size simplifies the decoding of instructions
on such architectures. Also, if the branch instruction that is used to reach the
patch is large, and the instruction that modifies memory is small, it may be
that many instructions surrounding the small instruction must be relocated.
This increases the complexity of the case analysis in the automated patch
installer,

When installing a patch, it is casier if the architecture has a branch intruction
that has a generous branch distance. ldeally, this branch distance would be as
large as any program that is anticipated to run on this architecture. This
would allow us to place the new code for the patch where it was most



convenient. It is difficult to install patches if the branch distance is limited,
because space for the patch must be found close to the patchpoint, and
patchpoints will be sprinkled throughout the program. In this case, spaces for
patch code would have to be created (or reserved beforehand) throughout the
machine code, rather than in one large arena. Also, the particular branch
instruction used for linking in patches should neither require the
modification of any registers to certain values, nor as a result of its execution
modify any registers (other than the program counter, of course).

Typically, it will be necessary to save some of the machine registers at the
beginning of each code patch and restore them at the end, without needing
any free registeis a priori. This problem, which we informally call "getting
one's foot in the door”, can be a puzzle on some architectures, but often there
is a solution, albeit contorted. On architectures that lack ever a contorted
solution, it may be necessary to obtain some help from the compiler, such as
reserving a number of registers solely for use by the debugger, or perhaps
requiring that the compiler allocate for the debugger's use a conveniently
located place for saving registers.

Narrow operand fields in machine instructions are problematic, if they must
be relocated. An example of an instruction that might need to have its
operand field(s) adjusted is a relative branch instruction. If it is moved to a
distant location, the obvious adjustments to account for this move might
overflow the operand fields. Even if a sequence of (possibly larger)
instructions exists that is equivalent to the relocated instruction, generating
this equivaient sequence greatly complicates the automated installation of
patches.

Branches with delay slots can also complicate the automated patcher. On
some architectures, there are restrictions against placing certain kinds of
instructions in delay slots, such as branches. If a store instruction had been
placed in the delay slot by the compiler, the automated patcher would
normally want to overwrite that store intruction with a branch. Instead, the
automated patcher must use some more complicated strategy. Similar
complications occur if the patcher needs to overwrite the delayed branch
instruction itsclf. Solutions to these problems, perhaps involving multiple
patches, such as those described by Kessler [Kessler], can probably be developed
for most architectures.

Register windows, such as the implemention on the SPARC [SPARCY, can
cause strange problems. Because register windows may be saved to the
register Lave areas, normally located in the runtime stack, the SAVE
instruction, which creates register windows, represents an instruction that
can modify memory. If an address being watched is within a register save
arca, should the SAVE instruction be counted as maodification of memory?
Because register windows may be cached within a SPARC microprocessor, it



may be that nc w.ite to that register save area occurs. If it does occur, it may
be the result of some subsequent SAVE instruction.

The simple solutior: is to assume that this occurrence counts as a
modification to memory. Justifications for this decision are that the
modification may occur in some execution of the program, and that it is
unusual for a debugger to be placing a data breakpoint on a register save area.
If the user's variable resides in an area that may be overwritten by a register
window save. h=2 probably wants to know about it.

Operating System Requirements

The system under which our method will run should provide an efficient
way to install the patchas. If we insist that the user must declare that he will
want data breakpoints before running the program, we can install the patches
efficiently, simply reading and writing the program. However, this situation
is very inconvenient for the user. To install data breakpoints after the
program has been started, the debuggzer must be able to write the text segment
of the running process, so that the debugger can install the patches after the
program has been star'ed.

Under the Unix operating system, writing the text segment of a running
process is performed via the ptrace() system call, and each call is slow. A
straightforward implementation of the automatic patch installer will need to
perform many isolated single-word modifications, because store instructions
occur scattered throughout the program. A simple implementation of the
installer will al.o perform a similar number of writes of patch code, with each
. atch being some small number of consecutive machine words. If there is a
high cost for each modification of the process text, but bulk modifications are
available and comparatively cheaper than modifying one word at a time, it
may be desirable for the patch installer to use this method. The installer
would collect all the changes, and perform the entire installation as one bulk
modification, rewriting the entire psucess text.

We will need space in the running process for all the patches. Again, a
simple solution probably exists on most systems, if we require the user to
declare before he starts the proram that data breakpoints will be required. It
may be reasonable to simply assume that data breakpoints will be required,
and always acquire the extra text space before debugging starts, if the costs of
reserving this extra space is low. In a virtual memory environment, the
main cost of this might only be extra swap space. After the process has been
started, it may be difficult to obtain the needed space. This may be a serious
problem if the text of the running program is restricted to a single contiguous
piece of memory, and is abutted by other parts of the process address space,
leaving no room for it to be enlarged.



On systems supporting mapping of files into the address space of the process,
it may be possible to map a file as text rather than data. If this is available, it
solves the problem of acquiring space in the running process, and may
eliminate the inefficiencies involved in writing the patches. (However, it can
only eliminate half of those writes, because it does not solve the problem of
patching the new code into the existing code.) To actually do the file mapping
in the monitored process, it may be convenient to require that a small
collection of routines, callable from the debugger, be already linked into the
monilored process.

Software Requirements

Late (dynamic) linking creates a problem for our method, because code that
must be inspected for store instructions is not necessarily present at
inspection time. To take advantage of the simple solutions above, in which
the user must declare beforehand that data breakpoints will be required, we
would also have to prohibit late linking. The more expensive solutions,
involving installation of patches in the midst of a debugging session, will also
require that every piece of code that needs to be watched is present, or that the
debugger be notified later, when the additional libraries are linked. There
may be no existing provision for such notification by the linker.

Ideally, we want this method to work in as many situations as possible. Our
method has no great inherent need that the code be generated by a particular
compiler, or just one compiler. However, one requirement that should be
satisfied is that the compiler leaves sufficient information to distinguish
machine code from data. This confusion between code and data commonly
occurs when the machine code written by the compiler contains various
kinds of immediate constants, such as jump tables, floating point constants,
and sometimes immediate integer values.

If the automated patcher cainot distinguish these various kinds of data from
machine instructions, it might mistake some of them for instructions that
can modify memory, and instrument them. Typically, the constant would be
overwritten, and relocated elsewhere to the body of the code patch. This
would be a serious mistake. Thus, we want some way to reliably distinguish
code from data. Note that the instructions and data need not be separate,
merely distinguishable.

Programs that do not distinguish code and data, and create new code as they
run, are difficult to handle using our method. As each new piece of code s
generated by the program, it would have to be inspected and patched by the
automated patcher. Also, when the storage for that dynamically generated
and patched code is recycled for reuse, the space taken up by the patch code
would need to be recycled also. We do not expect that our method of



implementing data breakpoints would be easy to include in such an
environment.

Results

We have implemented a simple version of the method we describe for the
SPARC architecture. We have implemented watchpoints for ranges of
addresses, rather than just for single addresses, as the test is almost as quick,
and much more powerful. We avoid the problems of acquiring patch space
by linking in an extra object module containing an arena of unused text space.
The arena is sufficiently large to hold patches for all the instructions in the
original program that may modify memory.

We currently install all of the patches before debugging begins, simply
scanning the program for stores nd rewriting the program with the patches
installed. This act adds the capability for data breakpoints, but does not set
any. Essentially, the modified program checks store references, but since no
data breakpoints are set, none of the stores trigger any special action. Along
with the arena of patch space, routines are linked into the monitored
program, which will add or remove an address range from the list of address
ranges to be monitored. These routines can be called from within the Unix
detugger dbx [Sun Debugging] to add or remove an address range when the
program is being debugged.

Our current implementation does not address modifications to memory
caused by traps to the operating system. Because the machine code within the
operating system cannot be patched by our routines, the best we can easily do
is insert a patch after the system call, and check to see if the data at the
watched addresses has changed. This is not as good as the support that we
provide for store instructions, which detects the write to memory even if the
value written is the same as the value previously there.

This style of patch, that detects patches after system calls by comparing data,
will be far more expensive to execute than the kind we have proposed. Our
reported costs do not include this cost, whatever it may be. However, we do
not expect traps to be a large fraction of the instructions in a program. In
addition to this lower frequency, when calculating the effect such patches will
have on the program's speed, the cost of the patch is balanced against the cost
of a system call, rather than the cost of executing a single store instruction.

Because we can only check after system calls, it may make more sense to
change the semantics of all our patches, so that the address check always
occurs after the memory is written, rather than before the write for simple
modifications, and after it for modifications by the operating system. This
would present a more uniform appearance of data breakpoints to the higher
levels of the debugger.



Costs

Our method involves a drastic modification to the text of a program, and so
there are large space and time costs involved. In programs we have
examined, store instructions make up roughly 10% of the instructions, both
statically and dynamically. In the worst case, every instruction in the entire
program which might modify memory has to be patched. Unfortunately, this
worst case is likely to be a very common case. If the user knows that the store
occurs in a small subpart of the entire program, the number of patches needed
can be reduced accordingly. However, the user may not be certain that only
the stores in one subpart of the program need to be watched. Various kinds of
dataflow information could also prove useful in reducing the numbe: of
patches, but that information may not always be available. We currently do
not perform any analysis that might reduce the number of patch points.

A static frequency of store instructions of 10% means that our

implementation of data breakpoints requires space for a patch for roughly
every tenth instruction in the program. The patches we have designed vary
in size depending upon the context of the patch location, but typically need 9
machine instructions of additional space per patch. (Shorter patches than this
are possible, if sufficient registers to execute the patch are known to be
available for use by the patch.) Thus, the size of a machine program when
patched is roughly twice as large as the original. In comparison, many other
implementations of data breakpoints have neglible space costs, and those
costs do not vary with the size of the program.

When the program is running, the time of executing the instructions for a
patch will be incurred roughly every tenth instruction of the original
program. For our implementation, a patch takes 25 instructions to execute.
An additional 6 ins:ructions are executed for each address range against
which the address oi the stores is checked. Finally, an additional 15
instructions must be executed if a match occurs, to save some more registers,
and fix up the process state. We do not include this last amount in
calculating the slowdown of the instrumented program, on the assumption
that if an address matches, the debugger will soon be performing some much
more expensive action, such as interacting with the user, rather than
proceeding to the next store instruction. Thus, the dynamic costs of our
implementation cause the program to run 4 to 5 times slower than the
original program, when only several address ranges are being monitcred.

When appropriate support is provided by the hardware or operating system,

data breakpoint implemer*ations exist that affect execution speed much less

than our lightweight instrumentation does. Hardware solutions [Pappas and
Murray] can provide a limited number of data breakpoints at basically no cost
in running speed, although the number of address which can be watched



simultaneously is limited by hardware. Operating system support, such as the
ability to alter page protection in virtual memory environments, can yield
fast implementations of data breakpoints also, by removing write permission
from pages containing the watched addresses, so that stores to these pages will
generate traps.

Conclusion

Although our implementation of data breakpoints is slow, programs
instrumented in this way are several orders of magnitude faster than the
obvious solutions using the ptrace system call. For debuggers that rely on this
system call for watching program variables, our method should be considered
as a replacement, if our architectural, operating system, and software
requirements can be met. On new architectures, the operating system support
for data breakpoints, (that is, the ability of the debugger to modify page
protection of the :nonitored process) may be planned but not yet
implemented. In this case, our method may serve well in the interim.
Finally, on hardware that provides support for data breakpoints, our method
might be used as a backstop, if the hardware resources are exhausted.
However, a steep degradation of speed, objectionable to the user, will occur
when our method is used to relieve an overburdened hardware solution.
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ABSTRACT

Performance measurement and debugging are complementary techniques used 1o produce a
correct, efficient program. In this paper we will discuss the integration of the two in SGI's
CodeVision™ product. We first discuss the notion of data sampling (snapshots), and sam-
ple traps. Then we will walk about the kinds of cumulative performance data that is col-
lected, and the instrumentation used to collect it We will also discuss tracing Jata, used
for both performance measurement and debugging, and then we will talk about extensions
1o our tools 1o support multiprocessor applications. Finally, we present our conclusions.

1. Introduction

Performance measurement and debugging are complementary techniques whose objective is o
produce an efficient program that gives the right answer. If a program fails, then it centainly takes 00
long to run, and hence has a performance problem. On the other hand, even if a program gives the
right answer, if its algorithms or their implementation cause it to take longer than the end-user will
wail, it clearly has a bug. In this paper, we will discuss the overlap of performance measuremen! and
debugging. and describe the implementation of SGI's CodeVision™ Performance Analysis tools that
exploit this commonality.

To the developer, performance measurement and debugging arc quite closely related: they both
involve studying the behavior of a program, and it seems quite natural that similar techniques would
be used, and, more imponanty, that the user model presented to do debugging tasks and that
presenied 10 do performance measurement be similar. Funixermore, the developer may stan to do a
“persommance™ experiment, but detect some problem that really is a bug. In our system, even while
performance data collection is taking place. the user may exercise the full power of a debugger: stop-
ping the process, seaing breakpoints, examining memory. and so forth. These debugging features arc
availablc even if the process has been instrumented.

Another reason (0 integrate performance analysis and debugging is that the extraction of perfor-
mance data from a process involves precisely the samc son of control operations as those needed for a
dehugger: stant and stop the process; read data from its address-space; determine the process' call
stack: note when it makes a system call, et All of these functions are provided by a process-control
server that is common to the debugger and performance analysis tools, and is described elsewhere!

™ CodeVision is s radamark of Sihoon Graphics, Incorporaied

| P. Sanvile. Chang. AM. svd Foster. A. “Manuging Debugger Process Lrecution A Finue State
Machune Approach™, next paper o this sesswon.
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The next section of this paper describes the sampling paradigm that allows for peiformance
measurements over various phases of execution of the program; the third section describes the perfor-
mance data that can be collected, and the instrumentation to collect it. The fourth section discuses
various kinds of trace information, which are used for both debugging and performance analysis. A
fifth section discusses extensions to support multiprocessing, and finally we present our conclusions.

2. The Sampling Paradigm and Sample Traps

Many performance analysis .. ive measurements that are global over the entre run of a pro-
gram: implicitly, they assume tha. _rogram’s performance characteristics do not change over the
course of a run. However, many .eal programs simply do not behave that way. They execute in
phases, and each phase has different performance characteristics. One objective of the CodeVision
project was to be able to extract performance characteristics for each independent phase of execution
of a program. To meet this objective, we defined a Sample Trap, which is analogous to a Stop Trap
(program breakpoint). Data is recorded at every sample trap, and the visualization tools allow exami-
nation of the cumulative data betwer - “ny two such points.

To the user, the sampies that were taken are indicated by tick marks along a timeline spanning
the experiment. A pair of calipers w.t provided that can be used o mark of the region of interest, and
all of the tools can be synchronized i~ any panticular caliper settings.

In a debugg~r, when you wants 1o see how a program is progressing, you can set (stop) traps that
will stop the program at various interesting places in the code, and examine its state when it reaches
those places. Such traps may be defined 10 fire when the program counter (PC) rcaches a particular
address or source line, when the program enters or exits a partucular function, or when it starts or com-
pletes a system call. Other traps can be set as watchpoints, which will trigger whencver a watched
memory region is accessed or changed. We also provide a pollpoint trap which is fired at regular
timed intervals. And, of course, there is a manual trap, namely the *stop™ button.

In our system, traps are defined as having flavors, and a stop trap is the flavor commonly uscd in
debugging. For performance measurement, we also defined a sample trap, which can be planted in
exactly the same way as a stop trap. The difference between the two is the behavior of the system
when the trap fires. A stop Lrap stops the process, whereas a sample trap causes the performance meas-
urement Lools to extract all of the performance data up to that point from the process and the operating
system, and record it in an experiment record.

Since the bulk of the performance data we can provide is maintained inside the process’ address
space, on itz stack, whenever we stop the process, we can use the process-control server to read the
data and record it in our experiment record. The performiance visualization tools can look at that data,
and show the net diffcrence between any two sample potnts in an experiment. For example, onc could
sct traps at entry and exit to some operation thought to be expensive, and sce exactly what took place
between those two points: which routines were called and how many times, how many times cach linc
of code was cxecuted, where the program PC was found, and so forth, but only for the interval
between the two points.

Somctimes it is difficult to know exactly where in the program traps should be plantcd 1o demar-
catc the programs phases. For window system programs, however, it may be straightforward to detect
the changes as the program runs. To that end, we also provide a manual sample trap: whenever the
user clicks a button on the user interface, a sample is taken. Wken an interactive window systein pro-
gram is quiescent, the user can take a manual sample, and then request a particular furction, When
the results of that function appear on screen, the user can trke a second manual sample, and examine
the data between those two events.
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3. Cumulative Performance Data and Instruinentation

The Code Vision performance tools can record a wide variety of measurements of a process. We
support number of different kinds of cumulaiive data: measurements of resource usage by a process,
as maintained by the kernel; statistical PC profiling; function execution counting, and/or basic-block
counting. Fach of these measurements are celectable, in any combination, from a performance panel,
integrated with the debugger. The perforrnance panel also provides for the entry of a directory name
used for recoding all data in an experiment record. It may be invoked any time during a debugging
session, although any data specifications must be set before starting the execution.

The CodeVision performance tools do not require that the user know about relinking with spe-
cial libraries or program instrumentation (except for malloc/free tracing). When performance data is
selected, and a run staited, the system will automatically instrument the program according to the data
requested by the user.

PC profiling is installed by intercepting the startup code of the procss moving the stack down 1o
provide a buffer for accumulating the counts, and invoking the kcmel setvice before branching w the
ncrmal user startup code. It introduces a small amount of overhead at startup, and will use a fairly
large region of the stack (one halfword for each instruction in the pmgram). During normal running,
however, there is no distortion of the behavior of the program.

Counting, either of basic-blocks or of function calls (a subset of basic blocks) introduces sub-
stantally more overhead: it translates the program into a substantiaily larger program that maintains a
set of counters, also on the stack. While the accual behavior of a program instrumented for basic-block
counts is significantly different from an uninstrumented program, the counts accumulated allow for
exact computation of instruction counts as if the program were uninstrumented. Unlike PC sampling,
these numbers are exact, not statistical. If both PC sampling and counting are requested, they will
both be performed, and both kinds of data will be extracted. The program that does the instrumenta-
tion is based on the sysiem program, pixie.

4. Tracing Dzta and Trace Traps

For some kinds of problems, either performance or debugging, it is useful to see the pattern of
behavior of the program. To that end we defined another flavor of traps, a trace trap. When a trace
trap fires, rather than either stopping the process, or sampling the bulk of its performance data, we
record information about the specific event triggering the trap.

We suppont three kinds of traces: malloc/free tracing, system call tracing, and page {ault tracing.
They may be selected individually or in combination from the perfonnance pancl, just as fur cumula-
tive data.

4.1. mallocifree Tracing

The tracing of malloc and free events can be used to deal with both performance anomalics
and bugs. The most obvious performance problem in the use of dynamically allocated storage is
a lcak: a region of memory is allocated, Lut never freed. If the user sclected malloc/free tracing,
each call to either of these mutines (or to sbrk or realloc) will record a recoid of where the
region was allocated or freed, and its size; we aiso record the callstack of the program at the time
of the call.

The trace can be visualized as a map of the heap. showing those arcas allocated and frecd.
and those arcas that have been allocated. but not freed. To further ald is figuring out the cause of
the problem, the trace also includes indications of where sample traps fired, so that, for example,
onc can sec exactly which regions of memory were allocated and/or freed during o panticular
phasc of exccution of the program. The user Interface (o this daw also provides a scarch capabil -
ity w look for events associated with a pardcular heap address, and a facility for listing all
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unmatched free's, includinig duplicate free's.

The use of malloc/free tracing requires linking with a special library, —Imalloc_cv and pro-
vides a very fast tracing mechanism, buffered within the target process.2 The callstack traceback
for the event is done by the process itself, rather than through the process control server; the
trace trap fires only when the buffer within the process is full. The buffer is emptied at those
times, and also whenever a sample trap fires, so that the sample events can be correlated with
malloc/free events.

4.2. System Call Tracing

Both bugs and performance problems can be manifested in a program’s sequence of system
calis. Sometimes, for example, an Iseek() on a file can be made in one place of a program,
confusing a subsequent read() in another. Sometimes, the program makes a large number of
usecless sysiem calls: it may repreatedly ask the system for its PID, when it could cache it. We
have actually found programs that size a file by reading it, instead of calling star().

To support investigation of these problems, we suppont tracing of system calls. Whenever
a call is made, the arguments to the call, and the call stack of the program at the time of the call
is recorded.

43. Page Fault Tracing

Another source of performance problems in a program is attributable 10 excessive paging.
To support investigation of this problem, we also defined a page fault trap. Whencver the pro-
cess takes a page fault, we record the faulting address, and the cal! stack of the program at the
time of the fault By looking at these events, the user can see what portions of the cnhde arc
responsible for paging events, and, hopefully, recode the algorithms to reduce their working sct.

§. Multiprocessing Extenslons

The most important extension 1o suppon multiprocessing is the extcnsion of the notion of sam-
pling to cover all threads of a process. Sample traps can be independently specified to :rigger in onc
or more threads, but, whenever they trigger, all threads are stopped, and the independent data for cach
thread is recorded. The data for each ihread may be separately visualized and compared.

Imp.cmentation o multiprocess suppon required the detection of those events which causc a
process (0 be created or to exit. Code was added to nurse each process through ity gestation, and then
resynchronize all the processes in the MP application for future sampling.

Tracing is also be done independently on all threads in an MP application, and the trace data can
be independently viewed.

6. Conclusions

Dcbugging and performance analysis share many common featurcs, and many of the process-
control operations nceded for one are necded for the other. A combined user model allows great flexi-
bility in performing both kinds of operations, vith relatively lite change in mind-set. A sampling
parsdigm can be uscd to iso'ate the behavior of a program during its various phases of operation, and
allow the user to understand the evolution of a program's behavior. Tracing cen also be used to under-
stand pecrformance anomalics and bugs, and both of these techniques further aid the undenstanding of
multi-processing applications.

1 We explored the posaibility of mn implementation that does not require any kind of special linking. but it
had far too much uverhead. as each event is separaiely eatracied from the process.
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ABSTRACT

1. Introduction

Onc of the more complex arcas in debugger implementations has been the correct handling of process exc-
cution. Traditionally, cach execution control command is implemented by an independent routine or set of rou-
uncs that synchronously manage the flow of control for cach phasc of the command's execution. Simple com-
mands like “‘continue™ and "'stop” arc initially casy to implement, but this approach becomes difficult to maintain
and cxtend, especially when interactions beiween differcnt commands und handling of multiple processes arc
considered.

In the CodeVision™ Debugger,! we specified the process execution handling as a finitc state machinc.
We found that the format model has resulted in significant improvements in robustness, extensibility, and main-
winability. Furthermore, the design proved to be casily enhanced to handle multiprocess debugging features.

2. The CodeVision Debugger

The CodeVision Debugger is o new source-language debugger developed at Silicon CGraphics as pan of an
intcgrated programming environmenl. Using a distributed client-server model, the low-level process control
functions arc conwined in the Process Control Server, which communicates with clicnt “views", Multiple
‘vicws™ exist as clients of the Process Control Server, providing u user interfuce for accessing underlying data
and functionality. The available execution control operations include the truditional run, stop, step, and retum
commands as well ax enhanced handling of interacuve function calls, including nested inteructive sequences.
The wap mechunism supports traps on breakpoints, funcuon entry or cxit, signals, system calls on entry or exit,
page faults, und daw wawchpoinis.

As part of the CodeVision inlegration strategy, the Process Control Server also provides integrated data
collection features for the CodeV'ision Performance Analvzer, Thus, the execution model 18 complicated by the
handhng of pullpoints and sumple traps where the process is wemporarily paused, performance data iy collecied,
and the process is astomaucally resumed.

M. The Finite State Muchine

The execution handhing of the CadeVisiod Pebugger was initally implemented using a fwrly traditional
moddel nvolving large case stitements and separate execution control routines.  Initinlly, we had problems
a hieving 4 high degree of robustness without o tormal model. Then, as we hegan 1o mtegrate more complea
features such as returming from a stack frame, source hae single stepping, and handhing of polipoints, our initial

U Conde Viniem nn trademark of Silicon Graphoey, I
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model began 1o break down. Some interactions, such as incoming pollpoints for data collection during single
siepping, were extremely difficult 1o handie reliably.

A finite state machine was designed 1 formally specify all of the possible states and transitions for han-
dling the exisling execution requests and traps. The initial specification involved multiple deterministic finite
state machine with nineteen distinct states. Through progressive refinement, the original design was coalesce ]
into a single nondeterministic finite state machine with three states, with a fourth being added later for handling
multiprocess synchronization.

For handling transitions for a single process, three distinct states exist: Running, Stopped, and Terminated.
The allowable set of events includes both process control requests and the triggering of various traps. In each
stale, ransitions are defined for cach of the possiblc events, some of which are illegal. A iable defines each of
the legal events, the resulting state, along with the set of actions (1o be performed. Additional state information is
stored in the debugger’s intemnal process object and obained through the /proc kemel interface.

As an example, consider the case where a stopped process is given the “return from current frame™ request
and encountcrs a breakpoint before the requesi is completed. The process would initially be in the Siopped siate,
The event, ReturnRequest would cause a transition into the Running state afier executing the actions o set the
frame exit trap, resume execution, and notify the client views. Upon encountering the breakpoint trap, the pro-
cess moves inlo the Siopped stalc, and the actions arc performed to clear the frame exit trap, notify the client
views, execule any attached acuons for the tnggered traps, and replant any enacious traps necessary (if removed
previously to be sicpped over),

4. Multiprocess Debugging Extensions .

The finitc statc machine was casily extended to handle multiprocess debugging. As the Pracess Conirol
Server mainins control over cach of the processes, it is able o handle synchronization across the entire group.
In the muluiprocess case, the CodeVision Debugger provides an extension to the trap incchanism to specify that
all processes in a process group should be stopped when a process stops on the rap. A new siate, Suspended
was introduced  ensure that such traps arce correctly handled when multiple traps trigger simultancously in dif-
fcrent processes.

A triggered trap may or may not actually stop the process duc to conditionals, counts, and diw collection
sample traps. Furthermore, a number of different processes in the process group might encounter traps simul-
wncously. Thus, when a pracess encounters a trap that would not nomially cause a stop (due o a false condi-
uonal or otherwise), it is moved into the Suspeaded swie. Then, the remaining process events for the process
aroup arc handicd w determine iof all the processes should be kept stopped or if the suspended processes may be
continucd.

§. Concluslons

Although the initial fimic stte mochine mexle! design and implemention was fairly time consuming, the
resulung architecture has provided major gams in the robustness of the execution madel, ease in integrating new
functionality, and the possibility for verification. Simply the excercise of formully specifying the complex
intvvactions involved in execution handhing provided insights into previously balfling problems. Ry further
incorporting the spectfication into a wble dnven machine, enhancements and bug fixes became simple, while
venhication of all possible combinatnons became more leasible, For handhng the complex interactions involved
m multuprocess debuggmg, the use of g hnte state machine wins Cnticil 0 our SUCCESS,
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Abstract

This paper presents the construction of a visual debugger in
which the debugged user program is used as the carrier of visual
functions. The realization is conducted by program generating
technique. The existing tools are exploited without investigating
into their interior structures.
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1. Introduction

Visual help has been used in program development long before the
term “visualization" was introduced. We use flowchart to demon-
strate program structure and use diagram to show data structure.
With these visual help, the design is coded to program text much
easier. ebugger is inevitably the next step to achieve satisfac-
tory executable code. Yet at this stage, no longer is the visual
help available. In recent years, with rapid progress in visuali-
zation, there have been works on visualizing the debugging proce-
dure. The two aspects to be visualized are cdata structure and
program execution sequence.

This paper proposes a new strategy to realize debugger visualiza:
tion. The aim to be achieved is a concise, flexible, yet power{ful
debugger visual supporting package. It does not intend to become
an independent debugger, but to attach visual diagnosing ability
to an existing debugger. Program generating technique is adopted
to achieve the gnal without investigation of the underline debug
ger. Section 2 of this paper reviews some of the existing works.
Section 3 presents the implementation ntrategy of a visual debuy
ger by program generating technique. Section 4 describes the
visnual presentation issues of debuygqging dlagnonis information,
Section Y concludes the paper and maken nome puqggent ions.



II. Related Works

There fﬁf cgnsiderable works on visual programming in recent
years( 13/4,0) | The majority of the works are on language design,
compilation, and various applications such as database query.
Less efforts are spent on debugging procedure. This is a situa-
tion similar to that the powerful source level debuggers were
developed many years later than the textual programming languages
were designed. One of the reasons is that the debugger is not
easy to construct. A debugger is a highly dynamic interactive
procedure. To visualize a debugger, data structures and program
execution sequences are to be shown visually. Yet not like data
structure or program visualization, here no visual relationship
is available, the debugger can only obtain indirect information
from declarations of data types and variables, and function call
sequences. In addition, to generate correct visual effect, the
spatial relationship of data items and historical sequence of
dynamic execution have to be considered. It is more difficult to
organize visual presentation.

An earlier work on program visualization is the PV system(®)., It
intends to provide lifetime support for software development. The
aim is to support maintainers of large (10° lines of code) com-
plex software system. The users of PV system are permitted to
look inside and watch their programs run or "open the side of the
machine", as the authors described. The PV system is designed for
programs written in Ada. The system provides the individuals a
variety of graphical representations for static program struc-
tures and dynamic procedure execution. The system allows simulta-
neously display of several different representations for the same
portion of a system or the same representation for several dif-
ferent portions through the use of multiple screens or multiple
view ports.

Animateq algorithms and data structures are described in
Barnett(1), The book is written for novices in programming. It
provides simple explanations and practical information for those
who need to use data structures and algorithms. A number of
programs vritten in BASIC illustrate program execution and dis-
play the data structures while execution. Although riata struc-
tures are represented visually, few is written about data visual-
ization.

A Collection of papers related to visual p'ogrgmmjng and visuali-
zation are included in a book edited by Chang(%). The book covers
theoretical presentation and practical applications of visual
programming systems. The book focuses mainly on visual program
ming but also includes some related wnrks on program visualiza
tion,

Seminar describes ?& iconic description languaye for data struc
ture visualization(?). The paper presents the Janguage DSIL (Data



Structure Iconic Language) for specifying the content and appear-
ance of icons depicting data structures. The prototype is pre-
sented in conjunction with the data structure editor in the
integrated programming environment being developed at the Univer-
sity of New Burnswick. The design of the DSIL is based on the
features of data structures in Modula-2 and is developed in X-
window environment.

The VIPS (Visual and "%teractive Programming Support) system is
presented by Sadahiro(®). vIPS is a visual debugger working on
Ada intermediate languages Diana and quadruple, the syntax tree
of the Ada program and the sequences of tuple of an operator and
its operands, respectively. VIPS preprocessor analyzes the Diana
file for information about blocks and variables. This information
and the quadruple are downloaded to the workstation. When a test
is executed, VIPS interprets the quadruple to depict program
execution behavior. VIPS graphically presents several views of
Ada program execution in eight windows: data, program code, block
structure, acceleration, figure definition, interaction and
editor. Since it works on the intermediate level, the data struc-
tures to be processed are simpler ones.

The integrated progrqp development environment FIELD is developed
at Brown University( ). FIELD offers a variety of facilities to
the programmer to build his/her own system. It is implemented on
UNIX environment and makes use of several UNIX tools: editors,
compilers, debuggers, profilers, and make facility. To integrate
these tools, a central message server is used to coordinate
communication among the tools, a concept called selective broad-
casting. FIELD supports visualization of user data structures,
inciuding dynamic updating of these structures while the program
executes. Program execution can be viewed through the source code
or through the visualized source code as call graphs. The intent
of FIELD is to become an integrated environment. Visual debugger
is only a component of the system. The weakness of FIELD is its
performance. 12 megabytes of memory is needed to ensure the
minimum environment. Any extension requires consistency with its
message broadcasting system. FIELD offers various visual debug-
ging facilities, but large portion of the functione duplicate the
existing ones real!zed in other tools.

III. Visual Debugger Generating

There are different ways to implement a software package. To
write a new one is often expensive, though the developers have
freedom to select functions and to decide format at their will.
To modify or enhance an existing one can better exploit the
existing facilities, but this needs experience, especially the

knowledgye of previous system. Otherwise, it might become more
expensive. The third way is to develop new functions outnide the
existing system, and then attach these functiont: to it. When
necessary, adjustment is made to {it environment and function

requirement. This strategy can minimize the efforts spent on



repetitive works. The difficulty is that it is not always easy to
incorporate new functions into the old system.

In a modern program ing environment, various powerful facilities
are already provided to the users. To build new functions, it is
not necessary to start from very beginning. Yet inconsistency
always exists. The I'TELD system uses a central message server to
cover the differences. But for a limited application involving a
small number of tools, this general form of central server is not
very efficient. In this case, the program generating technique
can achieve more efficient result. In this work, the functions of
an existing textual debugger are exploited directly, the visual
portion is develcped somewhere else. The program generating
technique by LEX/YACC is used to combine them together and to
make up the inccnsistency between them. The following can be
described as ihe characteristics of this system:
- Jimplementing a tool without much effort and little time
and space consumption,
- exploiting existing tools as much as possible,
- covering several tools without knowing their interior
structures,
- offering user access of visual data structures.

The programming language C is selected as the language for it a
visual debugger is implemented. C is one of the most popularly
used language. With its sperific language structures, it is more
flexible than other high level languages, and thus is more diffi-
cult to debug.

Dbx is a powerfw} debugging tool implemented on UNIX system V.
with dbxtool 's(1U) enhanced multiple window interface, it seems
there is no need to add any new function. The only thing which
dbxtool lacks, anf which might be badly needed, especially for
novice users, is the visualization of the debugging diagnosis
information. To realize visual debugging ability for dbxtool but
without investigating into dbxtool code and without understanding
the interior data organization of dbxtool, one possible way is to
let the debugged program itself do the job. 1f a piece of code
visually showing the data object is attached to the original
program, when the program is executed under debugging, the at-
tached code will be activated to produce visual representation.
This piece of code is called a visual decorator.

Undoubtedly, if & visual decorator has to be manually ineerted
into the original program, no one will use it. Fortunitely, there
exist software tools to automate the procedure. LEX and YACC are
two well known tools tu generate l!exical and syntactical analyz

ers and to help implement a compliler. In this work, a decorator
g=nerator is designed using LEX and YACC. It consists of a li.
brary of visual decorators, and a generating algorithm which
automatically catches a data object from original program and
attaches to it u corresponding visual decoirator. The resultant
program is a longe:r, functionally equivalent on=e with visual
decorators.



A visual debugger is supposed to find some dynamic, difficult to
be detected bugs. There is no need for it to check the correct-
ness of the syntax. Decorator generator assumes the syntax of the
original program is correct already.

Figure 1 is the overall architecture of the proposed visual
debugger. It is composed of three major components. The editor
can be any one to edit user program text. The modifier is the
kernel of the visual debugger. It analyzes user edited source
program, attaches visual presentation functions to it, and sends
the augmented program for compilation. A visual library is main-
tained by the modifier. The debugger can also be any conventional
debugger, with visual display windows created by the execution of
debugged user program.

Editor Modifier Dekugcer '

Source Visualization i Source | i Visual ||

Program Library , Prcgram| ; 2isp:iay
! ; Area

Deccrator rEompiler -
Generator -

User Interface

Figure 1. a model of visual debugger

IV. Visual Debugging Presentaticn

The data structures to be visually inspected are mainly dynamic
data, namely, those built up during program executior through
dynamic linke, e.g. lists, trees, etc., as well as dynamic call-
ing sequence of functions. For simpler data structures such as
basic data types, simple records, dbxtool ir powerful enough to
offer sufficient diagnosis information. Yet with flexible type
operations, no clear distinction can be made. For exanple, even
for a simplest integer variable, by & operation, a link pointing
to it is obtained. There could be operationr between this link
and other compatible pointer variables. So (.e visual debugger
should be flexible enough to let debugger usars select data ob-
jects to be visually inspected.

Several typical data structures are used in programming, nsuch as
stack, list, graph. They will not cause much difficulty to be
visualized in the torms familiar to people, if we do know such
data structures which are being processed, as in data structure
animatlion. For a visual docbugyger, however, it is very inconven



ient (if not possible) to ask a user to indicate the data struc-
tures used in his/her program. A visual debugger can get data
structure information only from the type definitions and variable
declarations. Through addressing analysis, the data structures
constructed by pointer references can be represented in the con-
ventional forms. But for those constructed by index reference,
for example, a stack composed of an array, as the storage, and an
integer, as top element indicator, there is not a reasonable way
to detect the stack structure. Therefore, this kind of data
structures are not subjected to be suitably visualized.

In decorator generator, a variable with data type to be visually
presented is ceptured, and a corresponding visual template is as-
signed to it. /A visual decorator is attached to the variable each
time its left value is changed. For variable i, the attached
decorator will look like
if(i_vf) v_show(i_template);

here i_vf is a flag contreolling activation of v_show(), and
v_show() is the function which manages generation of visual
objects to be shown in visual area. It finds the visual template
for variable i, fills in present value of i, checks links from
and to i for dynamically linked data objects, and provides the
result to the layout procedure.

Decorator generator maintains a visual library which records the
templates for variables caught from the original program, as well
as the operations needed to manipulate the templates. The library
is used by visual decorators. It is also needed for dynamical
visual inspection during debugging througn dbxtool's display and
call commands.

The visual objects created by v_show() are floating ones. How to
really arrange them in the visual area depends on the layout
procedure. This procedure maintains a coordinate system for
visual area, and arranges in it the data objects and links. There
are conventional visual representation for some commonly used
data structures, such as list, tree, as we see¢ in a textbook. But
in decorator generating, there can be no distinct indication of
data structures, only types of variables are available. To keep
visual representation of data structures the same as the conven-
tional representations is not always easy. The visual effect
depends on dynamic creating procedure of the data structures.

The typical program development procedure is that first the
program is edited, taen it is compiled and debugged. If any error
is repourted during compiling or debugging, the user will come
back to his/her source program and modify it correspondingly.
Dbxtool has incorporated in it the make facility to compile pro-
gram within dbxtool environment, so only two stages are involved
from a user's viewpoint. To attach visual decorators, however, an
additional stage of decorator generator is needed, cuusing a
little inconveniencr. This problem is easily bypassed by batch
processing. A batch file, Btill named make, is created, putting
together decorator generator and make commands, so that the users
can still work in the same manner. Moreover, using dbxtool's file



facility, the program appeared in the source window can still be
the user edited program with correct line indices. So the deco-
rated program can be regarded as been hidden from the users.

Dynamic behavior is very important to a debugger. A good debugger
offers various means of diagnoses to the users, helps them better
understand executing procedure of the program, and quickly iden-
tify and locate the bugs. A debugger should offer the users
certain kinds of control over the debugging procedure. For a
visual debugger, the requirement is the same. To the visual part,
it is not enough only passively visualizing data structures in a
fixed manner. In this work, dynamic manipulation of visual data
corresponding to text-form debugging information is offered, all
the operations are fitted into the same set of dbx/dbxtool com-
mands.

A data window for visually showing data structures is created
when debugging starts. It shows only a portion of the whole
visual area. The horizontal and vertical scroll bars are offered
for the users to view other part of the area. The arrangement of
the visual objects in the data wirJdow is decided by the layout
procedure, but users can require more detailed presentation of
some integrated data structures. For example, show the content of
an array.

Another window showing dynamic calling sequence is also created
if the users want to watch it, This window gives the hierarchy of
function calls and indicates current executing functions.

Users can not directly control the layout of the visual area, but
they have total freedom to decide what ty be shown in this area.
When the program is executed under debugger, a decorator is
silent until a user issues a command tc activate it. The imple-
mentation is through a ccntrol flag assigned to the decorator.
The flag takes initial value 0. The user can set it to 1 using
dbxtool's set command, and reset it to 0 to turn off visual
display. A user can also show visual data by using a display or
call command at any positien of the program if the data is ac-
tive. All of these are in the same way as a variable is textually
displayed in dbxtool.

The difference between textual and visual representation is that,
for textual output, no context relatiuvnship between data and
historical sequence are concerned, the output is simply a text
stream, giving present values of the variables. But for visual
data, spatial and logic relationships have to be considered. For
example, two objects can not overlep at the same location; the
following appearances of the same duta object can not create a
new visual object, but modify the vulue of existing one. The
management of wvisual area is getting more complex when scoupe
rules of variables are considered.

A limited, informal semantic checking can be ochieved by the
visual debugger. The type checking in C is not complete. For
example, C does not apply range checking for array index, though



the bugs related to range checking are often difficult to detect,
especially when pointer indexing is used. With dbxtool, only the
content of indexing variables can be inspected, not visually
expressive. With data window, since data structures are integra-
tively represented according to the logical structures, it will
be easier to visually find out of range errors of the array
indexing.

A prototype is implemented on SUN3/60 workstation. In the present
implemeantation, UNIX system functions vi, cc and dbxtool are used
as editor, compiler and debugger, respectively. Separated compi-
lation is not offered, only a single C file can be processed.

V. Conclusion and Discussions

This paper presents a new strategy to visualize a debugger tool.
The existing tools are fully exploited to realize visual func-
tioning. One interesting aspect is that by using program genera-
tion technique, the debugger visualization can be easily imple-
mented without understanding of interior structure of original
debugger. This provides an effective and efficient way to attach
new characteristics to an existing software package. It is possi-
ble chat the same technique be used to other application of
visualization.

The visual debugger is obtained by program generating technique,
where only the generation of decorated program is language de-
pendent. Not much effort is needed to extend it to a multi-
language visual debugger. For example, to implerment a Pascal
visual debugger, we need only to rewrite lexical rules for LEX
and grammar rules for YACC, and use compiler pc instead of cc.

A symbol table is required to record Jata types used in the
program. This duplicates the symbol table created by the compiler
with -g option. Since the symbol table in internal data struc-
ture, without inquiring into the compiler, the duplication can
not be avoided. Yet with current trend in offering a standard
compiler symbol table to the outeside users, the decorator genera-
tor can expect to use this table when a new compiler offers it.

To be a fully functioned visual debugger, there are mor« things
to be considered. First is to incorporate separated compilation,
which is necessary to develop large application program. Aunother
is to allow incomplete visual information. In visual presenta-
tion, spatial and historical relationship are important. Yet the
users may randomly require visual display without concern of such
relationships. The debugger should accept these incomplete re-
quirements and give indication wnhere the visual information is
missing. Still another concern is the layout. To be visually
attractive, & powerful layout procedure is needed. It should be
able to arrange visual objects in away familiar to the users. It
will be better if the users can have certain control of the
display objects and select their preferred way of presentation.
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Abstract

In this paper, we describe software developed for interactively ex-
tracting and modifying typed data str»ctures withir an executing pro-
gram, a package dubbed the application erecutive, or ae for short.

The application executive incorporates much of the functionality of
the Unix breakpoint debugger dbz [Uni87b, Lin90] or gdb [Sta89a], the
breakpoint debugger distributed by Free Software Foundation, namely
the ability to interpret arbitrary expressions and access to data objects
in different stack frames. It further supports run-time definition of new
data types and data objects, and extended flow-of-control constructs.!
There is a major difference between ae and conventional breakpoint
debuggers: conventional debuggers exist as a separate process, with a
different address space, whereas ae is simply a library compiled with
the user’s code. This allows the user the freedom to modify ae’s internal
data structures at will, for compiled code to call the ae interpreter and
for the interpreter to returr values to the compiled code, and for the
user to arrange for the input text stream to come from an arbitrary
source. It allows the usei to create complex data structures (possibly
containing pointers) in a program’s address spac: i run-time and to
pass them as arguments to compiled routines it does not interfere
with processes that communicate using signals, nor does it rely on
the operating system to context switch back and forth between the
debugger and the application, providing for more efficient data access.
One disadvantage is that the user’s program can possibly corrupt ae's
internal data structures, although this rarely happens when it is used
in & manner similar to conven'ional breakpoint debuggers.

The application executi.e ures C as the rource for its interpreter;
there in no need for the uscr to learn a new programming language in
order to use it. Very few nonstandard constructs were added to the ¢
interpreter. Instead, the user calls functions in the ae library (libac. a)
. ang the host i:achine's native calling convention for 1/0), control of
scoping. etc. It retrieves symbolic information from a debug svmbol
table in the executable just an dbx doen, although dbx iacrementally
retrieves the required information, rather than relying on a single pass
to translate the information into the appropriate foriat as ae does
This portion of se is referred to an the stad acanner,

When called from a C' or Fortran application, ae provides an amount
of interactive control over the application equivalent to the interpee.
tive environm 'nts used with Lisp and other symbolic languages. ‘This
control has ita coat: it is expeciad that the urer in intimately familiar
with the C language. and if ae ix uned with compiled Fortenn code,
the ' equivalent of the Fortran data types and ealling conventions

"Loopng constructs are planned for future verions



The input stream may be preprocessed through the C preprocessor?
cpp [Uni87a) 1o simplify the entry of complex code fragments.

With the addition of a signal handler and various debugging rou-
tines, the application executive can form the basis for various parallel
and distributed debugger configurations. We describe several such con-
figurations for different computer architectures.

The software has been ; rted to various machines running the
UNIX3 operating system or variations thereof: Sun Microsystems’
Sparc* workstations, for use with the native C compiler or the GNU
C compiler, gec {Sta89b), the Alliant FX/Series® Computers, and the
Alliant FX/2800. On paraliel architectures, separate instances of the
interpreter may be executed by simultaneously running threads.

4epp's interial buffering must be modified if itin ta be uned in an intrrar tive pude

TUNIN s a trademark of AT&T, Ine

Spare is a trademark of Sun Microaystems, Ine.. 2530 Garcia Ave Moontan View
(A Y4041

*Althant, FX/Senen, and FX/2800 are trademarks of Alhant Computer Systemn Cog
poration, One Monarch Dnive, Littleton, MA 01460,



Contents

1 Usage .
1.1 A Simple Example .. ... ...................
1.2 TheStabScanner. .. .. ... ... ... ...
1.3 Manual Insertion of Compiler Defined Objects . . . . . . . ..
14 Thelnterpreter . . . . . . . .. .. ¢ i i v it vt
141 Declarations. . . . . . v v v v v i i e
1.42 The return Statement . . ... .............
1.43 Thetypeof Operator . . .. .. ... .. ... .....
1.4.4 The typedec Declarator . . . ... ... ........
1.4.5 Intrinsic Functions . .. .. ... ... ... ... ...
1.4.6 Access to Local Compiler-Defined Data Objects . . . .
1.4.7 Other Commonly Called Library Routines . . . . . ..
148 ErrorRecovery .. ... .. .. ... .. ... .....
1.49 Parallelism ........................
1.5 Flags. . . . . .. o i e e e e e
16 Bugs . . . . . . e e e

2 Installation

3 Debugger Configurations
3.1 Sequental Debugger . . . . .. ... . oL
3.2 Parallel Shared Memory Debugger . . . . .. . .. ... ...
3.3 Parallel Private Stack Memory Debugger

4 Conclusion

16

20
22
22
25
25

20



1 Usage
The ae interpreter is usually invoked through the routine fae() or sae():

int fae (file, return_loc, routine_name, ...)
FILE *file;
char "returnloc;
char "routine_name;

int sae (string, return_loc, routine_name, ...)
char *string;
char *return.oc;
char "routine_.name;

v'here
file or string is the text stream from which the interpreted C code is read.

return_loc is a pointer to the space allocated for the return value. Data
ob jects are returned from the interpreter using the return statement,
a standard C construct. If no value is returned. return_loc may be
null. returnloc is declared as char * and not void * as the latter
construct is not accepted by certain C compilers.

routine name is the name of the routine to interpret. If routine_name
is null, any code appearing in the input stream is interpreted and
we return to the caller only after a return statement is encountered.
Otherwise, only the routine whose name matches routine_name is
interpreted and we return to the caller after evaluating the body of
the procedure, or earlier on a return statement. Unnamed routines,
i.e. blocks of code surrounded by only brackets, are always interpreted,
and we do uot return upon exiting such a block.

extra parameters Any arguments following routine_.name are passed to
the interpreted routine. They are ignored if routine_name is null,

return value fae() returns the number of errors encountered while inter-
proting the text atream.

1.1 A Simiple Example

Consider the following program, “test.c";



#include <stdio.h>
int global = 42;
static int static_global = 55;

main (argc, argv)

int argc;

char **argv;

{
static int static_local = 22;
ae_stab (argv[0));
fae (stdin, NULL, NULL);

}

The program is compiled with -g so that debugging svmbol information
is included in the executable, linked with libae.a or libae_g.  and run.

ae_stab (argv([0]);

invokes the stab scanner, entering the type and address of all data objects
and routines and type names into ae's internal symbol tables. Several diag-
nostic messages will be printed (and possil!y some error messages) during
this process:”

scanning 436 link symbols
parsing 751 debug symbols
test.c:

ae._ntrp _ref.c:

ae_stab _ref.c:

751 debug symbols parsed

*liban_g.a is the version of ae that has itnell been compiled entirely with debugging
symbaol information.

Tae ntrp _rof.c and ae stab.ref.c are the two library filen in libac.a that have bheen
compiled with the -g option. 10 the user had compiled with libae _g.a, all of the applic a-
tion executive would contain symbolic debmigging information, resulting in more symbaols
and filenamen in the symbol tables. On Derkeley UNIX executables, the debug and link
ayimbola reside in the aame table, so the number of aymbols in the debug table and in the
link table are the same. ‘The examples presented here were ran on an Alliant FX /2800,
with System V executables.



Once the interpreter is invoked, a diagnostic message is printed:®
entering application executive
Any text the user enters now is interpreted as C source code:

{ -printf ("%d\n%d\n", global * 2, test_c‘static_global); }

84

85
The source code must be surrounded by brackets, as it is considered to be
the body of an unnamed function. The function declarator optionally may
be present; it is required if parameters are passed to the interpreted routine.
Since printf() exists in “libc.a”, which does not normally contain symbolic
debugging information. it is necessary to call printf() with the Id symbol
table entry as opposed to the debug symbol table entry. The names of the
ld symbol table entries for C identifiers are prepended with an underscore.?
Since static_global is private to the compilation unit test.c. and in the
entire program there may be many compilation units referring to an iden-
tifier by that name, it is necessary to resolve the potential ambiguity in a
fashion similar to dbx: the identifier is prepended with with <filename>*,
where underscores are substituted for illegal characters in <fllename>. Like-
wise, static_local may be referenced by the name main“static_local. Sce
Subsection 1.4.6 for a more complete description of access to non-global
identifiers.

1.2 The Stab Scanner

The symbol table scanner, or stab scanner, is invoked with the routine
ae_stab():

int ae_stab (filename)
char *fllename;

*Diagnostic mesnagen can easily be turned off hy renetting the global variable ae_sllent
to 0

*An Id symbol table entry does not contain type information, and if we were (o use the
return value of printf(), it would be necessary to cant _priutf to a pointer to a function
returning the appropriate type  An ld ayinbol table entry for a data obiject hehaves much
like an areay of characters 1t is promoted ta char ® when pasned an a patameter or uned
In moat expressions. Internally, it in saud to have location type See Subction |2




where

filename is the name of the executable file. This is usually equivalent
to argv[0] in the formal argument list of the main program, if the
standard naming convention is followed.

return value ae_stab() returns the number of errors encountered while
scanning the executable’s symbol table.

Symbolic information for all routines and data objects which exist in a com-
pilation unit compiled with the -g option is entered into ae's internal symnbol
tables where it may be accessed by the interpreter (and by the rest of the
program). Error messages, which may be indicative of a programming error,
an error in the compiler-generated symbolic debugging information, or type
information inconsistent between compilation units, may be emitted during
this process.

The stab scranner also creates entries for the linker simbols, which have
an underscore prepended to a C identifier or an understore prcrended and
another underscore appended to a Fortran identifier. Thesce symbols are said
to have location type. and their type is coerced to char * when used in an
expression. A location may also be used to call a function if no value is to
be returned from the call. In this case, the user must insure that the value
of the symbol in question is indeed the address of a subroutine,

Should the definition of a type name differ between two or more compi-
lation units, the former declaration takes precedence and subsequent defini-
tions are not entered into ae's internal symbol tables, although data objects
declared only with a later definition of the type name correctly assume the
latter type. Global variables whose types differ across compilation units are
handled in the same manner, regardless of which declaration(s) contained
the extern storage cluss and which declaration actually reserved storage for
the data object,

Usually, type information that is inconsistent across compilation units
indicates a programming error. Should the stab scanner resolve the conflict
in an undesirable fashion, one may use casts to achieve the desired data
typing. dbx avoids this problem by considering type names private to cach
compilation unit. If this were to be the case with se, it would greatly
complicate the usage of the interproter,

Errors encountered by the stab scanner may be resolved in one of three
ways, For most errors, the identifier in question is siioply disearded, and
the scan continues with the next stab string. Errors coneerning improperly



nested include files or blocks cause the scanner to terminate and return to
the caller of ae_stab(). Finally, the stab scanner contains the same internal
error checking mechanism as described in Subsection 1.4.8 that may cause
a fatal error to terminate program execution entirely.

1.3 Manual Insertion of Compiler Defined Objects

If the user wishes to avoid the overhead of the stab scanner, he may manu-
ally enter symbols for the desired data objects anc data types by using the
routines sae_declare() and fae_declare():

int sae_declare (string,...)
char "string;

int fae_declare (file,...)
FILE *file;

where string or flle contains the C source code necessary to declare the
objects whose addresses follow it in the argument list, e.g.

int i, a[2];

sae_declare ("int i, a[2];", &i, a);
creates static symbol table entries for the integer variable i and the ar-
ray a. If a data object declared in this manner is dynamically allocated.
it is important to remove the symbcl using ae_remove_symbol() before
storage for it is Jeallocated. Sce Subsection 1.4.7.

1.4 The Interpreter

The interpreter accepts a subset of the C programming language, as defined
by Kernighan & Ritchie [KR88]. It is implemented in an entirely syntax-
directed scheme; expressions are evaluated as they are parsed, that is, no
intermediate expression trees are explicitly formed. Currently, the ¢ subset
consists of declarations, expressions (with function calls), blocks, functions,
and the if and return statements. Missing are loops and other flow of-
control constructs. In addition, the language has boen extended with the
typeof operator (described in Subsection 1.4.5), the typedec declarator
(described in Subsection 1.4.4), and vasions intrinsic funetio « (described in
Subsection 1.4.5).



When the interpreter is invoked, a task record containing space from
which to dynamically allocate objects, the semantic stack, and other internal
data objects needed by the interpreter is allocated on the run-time stack,
and a pointer to this record is passed throughout the entire call sequence.
Thus, the interpreter may call itself recursively, or several threads of control
may execute the interpreter simultaneously.

1.4.1 Declarations

In addition to examining and,’or modifying compiler-defined variables, the
user may create interpreter-defined variables interactively and modify them
in the same manner. This section describes the actions that take place when
the interpreter encounters a declaration for a data object that it cannot cur-
rently reference. In such a case, new storage is allocated and the necessary
syrabolic information entered into ae's internal symbol tables.

Global Variables If the interpreter parses a declaration for a data object
not previously declared outside the scope of any block, storage for the ob-
ject and its symbolic representztion is statically allocated, and the symbol
interted in a static hash table.'® The user may enter and exit the interpreter
and the object will remain in scope, unless manually removed by the user.!!
If further declarations for an object by the same name are encountered out-
side of any block. they are assumed to be redeclarations of the same object,
and the specified data types must agree.

Dynamically Allocated Local Variables If the interpreter encounters
a declaration for a data object (not declared static) inside the scope of a
block. then storage for the object and its symbolic representation are dy-
namically allocated. The data object stays in scope until the end of the
current block. at which point the storage is reclaimed (unless the object was
declared using the svatic storage class). Multiple declarations for dynam-
ically allocated data objects are not allowed.!? Declarations inside a block
need not precede executable statements: their order may be intermixed.

1°On parallel architectures, statically allocated symbols are accessed in critical sections
of c~le. See Submection 1.4.9.

""Th'a can be accomplished by calling the routine ac.remove aymhol() as dencribed
in Subsection 1.4.7.

V{iplear the user han manually removed the s:mbol by calling the rowtine
ac_remove ayinbol(). See Subeection 1.4 7,



Static Local Variables When the keyword static is used to declare a
data object local to a block, then the semantics depend upon whether we
are int.rpreting a named routine or are within an unnamed block of code.
In either case, given a declaration

static <type> object;

two symbols are created: one by the name object, and another by the
name <routine>‘<block>‘ob ject, where <routine> is the name of the rou-
tine being interpreted!® and <block> is the current block number. <block>
is omitted if it is zero, i.e. if we are in the outermost block of the routine.

If we are interpreiing a named routine, storage for the object and the
symbol <routine>‘<block>‘object is statically allocated, and the symbol
may be referenced by that name as if it were a global variable. The object
may be referred to by the name object until the end of the current block.
If a subsequent invocation of the interpreter encounters the same routine
and block,'* object will refer to the same storage location; the semantics
specified by the C standard are preserved.

If we are within an unnamed block of code, the symbol ‘<block>‘object
only remains in scope until we exit the outermost block.!® object remains
in scope until the end of the current block. This was done for the following
reason: if looping constructs are added, the interpreter may look up the
symbol ‘<block>‘object to find the appropriate storage location when an
inner block is reentered,'® but since unnamed blocks are considered distinct
the object cannot be referenced from within another unnamed block.

Static Global Variables When a declaration for a previously undeclared
data object that includes the static keyword appears outside the scope of
any block, then the semantics depend upon whether the filename of the input
strcam has been set. This may be done using the #line compiler directive
in the standard fashion. If it has not been set or has been reset to the empty
string, the declaration is considered private to the current invocation of the
interpreter. The symbol is dynamically allocated 22 remains in scope until
the interpreter exits.

13 <routine> is the empty string in the case of an unnamed block.

*T'he code for the routine must be identical to what was previously encountered.
"*We are in an unnamed block. so <routine> is not specified.

'“This in impossible in the absence of looping constructs.



If the filename of the input stream has been set to non-empty string,
and a static declaration such as

static <type> object;

is encountered, then the symbol <ntrp_unit>‘object is created, in addition
to object. <ntrp_unit> is identical to the filename of the input stream,
where all characters not allowed in C identifiers have been replaced by un-
derscores. An underscore is prepended to the entire string should it being
with a digit. object remains in scope for the current invocation of the inter-
preter, whereas <ntrp.unit>‘ob ject is treated as a global variable. Should
a subsequent invocation of the interpreter have the filename set to its pre-
vious value and encounter a static global declaration for an object by the
same name, then the new declaration refers to the same object. Of course,
the specified data types must agree.

1.4.2 The return Statement

If a return statement is executed, the interpreter exits and control returns
to the caller. If an expression follows the return, it is vvaluated the result
copied to the space pointed to by the second argument of fae() or sae(). In
this case, it is an error for the second argument to be null; an error message
is displayed, and the return aborted.

Control will also return to caller when the end of a named block of code
is encountered or when the end of the input text stream is reached.

1.4.3 The typeof Operator

The typeof{) operator returns a pointer to the internal type descriptor as-
sociated with a data object. typeof may also take a type name as an argu-
ment, and therefore cannot be implemented as an intrinsic function without
using macro substitution on the input stream to insert a data object which
is casted to the specified type. Tle type descriptors used by ae have data
type union ae_TYPE, which has the equivalent typedef name ae_type.
Consequently, the result of a typeof expression has type ae_type *. Like
the sizeof operator, parentheses are only required around the operand if it



i a type name:

typeof <expression>
or
typeof (<type_name>)

<type_name> is defined in Kernighan & Ritchie [KR88], Section A8.8. In
the current implementation <expression> is fully evaluated. See Subsec-
tion 1.6.

The typeof operator is commonly used in conjunction with the library
routine ae_fprintf() (described in Subsection 1.4.7) to examine the type of
a data object:

float f;

{ ae_fprintf (&_iob[2], "%T", typeof f); }
0xc21118

type: ae_ D_FLOAT

size: 4

stderr is usually defined as a macro for (&_iob[2]) in stdio.h. No
symbolic information exists for macros, so we supply the expanded test
directly. Alternatively, the input stream may be preprocessed with the C
preprocessor, cpp. cpp buffers its input stream in large blocks; this must be
changed if expressions are to be evaluated as they are entered.

1.4.4 The typedec Declarator

The typedec keyword may be used in a declaration to define a new data
object using a type descriptor supplied by the user:

typedec (<expression>) <dec.list>:

declares all data objects in <dec_list> 10 have a basc type!? specified by
<expression>, which must point to a valid type descriptor. The argument
is checked to be sure it is of type ae_type ™ and has a non-null value. An
invalid type descriptor that passes these checks may cause a fatal error to
be subscquently encountered (See Subsection 1.4.8). The typeof keyword

'The identifiers in <dec 1iat> may be declared an a pointer to, an array of, or a function
returning the baae type, or a combination thereof.
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I. Introduction.

One of the most challenging problems in designing a distributed debugging system
(DDS) is the implementation of debugging functionalities in a given programming
environment.

A possible solution consists on decomposing the debugging environment into domains,
and analyzing the interactions between the DDS and each domain. Cheng, Plack and
Manning [CBM] suggested to decompose the debugging environment into three
domains: specification, execution, and observation. The first domain is the source code
in which the programmer specifies the expected process behaviour and data to be
collected. The second domain concems the relations between the DDS, the operating
system and the user processes under debugging. The third domain deals with the possible
interactions that can take place between the user and the debugger. DDS is an agent which
manages the interactions among these three domains [CBM].

We have considerated an additional domain dealing with the hardware on which the DDS
can be implemented. The later induces a set of consiraints which should be met by the
DDS implementation. Designing a DDS consists 1o find out suitable methods wkich
solve or minimize the problems related to DDS interactions with its environtnent, and the
hardware constraints.

When designing the C. NET Debugging System (CDS) according to the above idea, we

proceed in five steps described in this paper. Section Il presents the environment
according to which CDS was designed. Section 111 describes the five steps proceeded o
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design CDS. Section IV is an overview of CDS; and then, we conclude by showing
problems we faced when designing CDS.

1I. C_NET programming environment.

For about two years, the "Parallel Languages and Systems"” group of the LIP laboratory
has been carrying out the development of a high level programming environment for
reconfigurable transputer-based multi-processors. The environment suggested aims to
virtualise the use of such machines. It has been developed on a SuperNode and is
composed of a set of software components presented below (fig. 1) :

C_NET: _ Monitoring TENOR++: process
A distributed programming language g:::ﬁf:’& Allocator:
dynamic .
on-line configurer dynl.!'mc
o Rl
vireual channels with implicit routing debugger ks i

Communication manager Control bus manager:
level 1: Virtualisation of communications on the control bus
virtual churmels withoJt any implicit routing

T.NODE: reconfigurable oansputer-based multi-processur
SWITCH

Controller.

Transputers: processors | CONTROL BRUS

-Fig. 1- Organization of the C_NET programming environment

T800 transputer processor. The T800 developed by INMOS. s nov' a well-known
single chip processor [J]. It has four asynchronous communication links anJd an internal
on-chip memory /4 k bytes, 50 ns). The links are 20 MHz circuits. An additional
component, the 64-bit floating-point unit lies across the top of the chip. The transputer
has two priority levels. In particular, processes running in the high priority level cannot be
descheduled unless they reach a scheduling point (e.g. timer halt, communication point).

SuperNode. SuperNode is a transputer based multi-processor machine (up to 1024
transputers). It provides a crossbar switch for dynamic reconfiguration. All the
transputers ir the SuperNade are conncected to a controller transputer via & master-slave
bus (fig. 2). We use this bus to transport debugging observations in order to uvoid
overloading trunsputer communication links.
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Control-bus manager. The control-bus manager virtualises communication on the
control bus. i offers a high level interface that allows the processes running on the
control transputer and the worker transputers to share the control-bus. More details can
be found in [M2]. Within the C_NET programming environment, the bus manager is
essentially used by CDS [M1]. On-line observations carried by the bus do not interfere
with the messages flowing across the swilch in the main communication network. The
bus manager is also used by the dynamic configurer (phase synchronisation and
communication of permanent variable values).

Dynamic configurer TENOR++. The dynamic contigurer TENOR++ allows
programs with variable topologies to be developed. TENOR++ can be accessed through
the use of two C extension languages. More details can be found in [AB].

Work
- orkers — P
pou - | »n
—) 2
5
. e ig=——— |3
:: [em— T
. >
| Configuration link N
———————

-Figure 2- The SuparN. de.

Debugging system CDS. This system is described in section IV. it allows process
behavior observations to be carried out in real-ume when a program is executed.
Observations are drawn across the control bus. They are displayed through a multi-
window interface which allows inter-active debugging to be completet.

Process allocator. The process allocator is intended to allow the machine to be
shared between several independent applications ( processors, switch and control bus).

Communication manager. The C_NET programming environmen: permits the
development of statically-defined phase chaining programs. Each phase is assumed to be
run on a particular topology, generally specified by the programmer, which is intended to
fit as best as possible the communication needs of the phase. Detailed information on
TENOR++ can be found in | ABB|.
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A distributed programu..ing language: C_NET. The C_NET language issued
from our motivation to design a language supporting both object-oriented (C++) and
concurrent programming (CSP-OCCAM). C_NET tries to solve appropriately the
difficult problem of interfacing class and process notions. The solution suggested in [A]
fits the data encapsulation principle and is fully compatible with the inheritance
mechanism.

III. CDS designing steps.
When designing CDS according to the above environment, we proceed in five steps.

Step 1. Defining the basic requirements for CDS; these requirements were defined
according to the features of the C_NET environment : process halting and interactive
context modification (process variables, channels, systemn variables), trace colleciing and
event time-stamping with a global software clock.

Step 2. Analyzing the interactions of CDS with its environment; starting from the
requiremer.ts, we outlined the objects exchanged between CDS and each of the domains
above presented. Then, we defined suitable interfaces to handle the object exchanges.
This gave us an interaction graph, and then, the general structure of CDS. Figure 3
shows the issue of that step : the interaction graph, where numbers represent the type of
interactions for object exchange between CDS and each domain.

In shor, in the specification domain (C_NET language), interactions consist to insert
debugging code in the source program. The suitable interface is a library of functions. In
the execution domain (user processes), objects are process cvents and programmer
requests to running processes. Our interface is a set of communicating processes and
functions. The observation domain is the programmer controlling process execution by
means of a graphical interface, and modifying source code according to the observed
behaviours of these processes. Finally, the hardware (shown in grey in figure 3) is the
support of these interactions.

Step 3. Identifying the problems incurred by these interactions; these problems
depend on both the type of the ubjects exchanged between CIYS and each domain, and the
interface in which these interactions take place. So, we considered all the exchanged
objects systematically.
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C_NET language

| LI

CDS library User program ||

Debugging strategy modification

. Paralle]l program loading and execution
Observation collectin

Programmer request Jelivery

. Observation transpon

. Request transpon

. Observation delivery

. Requent collecting

. Observation display

10. On-line dialogue requests

ArRramasRrrarsmarEEEEEas  cesEr KRR

-Figume 3- Interaction graph.

For instance, in the specification domain (C_NET language, fig. 3), objects are process
behaviours, and our interface consists of a library of functions. Examples of related
problems are readability end redundancy of debugging code. In the execution domain,
objects are process events; interface is a set of monitoring functions whose utilization can
incur problems such as interference with user process scheduling, and probe effect.

Finally, new problems, such as congestion, transparency, and overflow, arise. They are
rclated to the structure of CDS (e.g. interactive software monitor, fig. 3) and the
hardware supporting it (e.g. SuperNode control bus which is used to convey debugging
observations).

Step 4. Analyzing implementation choices. They are relaied to the hardware.
Therefore, we first analyzed the constraints generated by the hardware (e.g. measure of
bus performance as well as the access time to standard input-output and shared
resources). Then, we found means to solve or minimize the problems identified in step 3,
meeting the hardware constraints. For example, as building a transparent software
monitor is impossible. we tnanaged to make this monitor fair. We also designed a control
bus manager (fig. 1) in order to share that bus between CDS, TENOR++ and user
processes. In the same way, we reduced the congestion incurred by the interactive
monitor when conveying debugging observarions.

Step S. Implementing CDS. This step is the application of solutions found in the
fourth step. It consists in analysing in more detail, the different components of CDDS and
specifying the cooperation between them. For example, communication between the
interactive monitor and the graphical interd *ce takes place in Unix sockets, because they
run on different computers. Another example is the bus sharing between trace conveying
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and clock synchronization. This step also consists in solving programming probleis
incurred by the implementation of choices made in the fourth step.

Figure 4 shows the currently implemented architecture of CDS. Arrows represent the
interaction between CDS processes.

User process

:SuperNode Monitor

-Figure 4-  CDS implemented architecture.

IV. Presentation of CDS.

CDS is an on-line multi-function debugger, implemented on the SuperNode at the LIP
laboratory. It has been operational since March 1991. Currently, CDS consists of three
components (fig. 4) :

(a). An interactive software monitor to collect, convey and manage debugging
observations. It consists of a set of concurrent processes distributed on each SuperNode
rransputer, the frontal board, the SuperNode server, and the debugging work-station.
The interactive monitor uses the control-bus manager to convey debuging observations.

(b). A Xwindow based multi-window craphical interface to handle dialogues, to
display run-time events and to re-examine traces. It runs on the debugging work-station,
We currently use Sun Spark work-stations at the LIP laboratory. Figure S shows the

main window which displays real-time events and enables the programmer to open
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dialogue windows (one for each process in breakpoint) and trace windows (one for each
transputer).

(c). A library of functions devoted to sct breakpoints and to specify trace collecting
points at source code level.

I CDS _ GRAPHICAL INTERFACE —1
(Quit )(San ) (Piny back )(Feed dislogue )(Transpus. event:) wransputer: __JKN] (Scan )
List of process dialogue requests S :E ! number: Instant events of processes

CDS%
CDS% EVENT DISPLAY HALTED. Press START buton .

= =l

-Figure 5- CDS control window.

CDS currently provides :

(a). Dialogue handling between the user and processes at breakpoints. A dialogue is a
communication protocol which enables the programmer to observe and modify the
process context (process local variables, cnannels and system variables). When a process
reaches such a breakpoint, the dialogue protocol sends a request to the programmer, and
the later can modify the context of that process by means of a dialogue window (fig. 6).

r CDS DIALOGUE <Transputer xx> <label> my process name |

o) Chad COoowadD) o) CGmw)
Digitinput: ___[BJ¥] Textinput:

Process variable names Display Panel

0c. user channe!

1 s. string variable

2 B. Byie variable
3S. Short variable

4 1. Integer variable
SL. Long variable

6 D. Double variable

1S =

-Figure 6- CDS dialogue window.
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(b). A spy process (scanner) which can collect meaningful info-mation on running
processes. There is one scanner on each transputer. The programmer can dialogue with
them at any time to collect information specified for each spied process in special tables.

(c). Traces collecting. Run-time events can be observed in real time in the control
window (fig. 5). The programmer can also open a trace window (fig. 7) for each
mansputer. CDS also provides an event filtering mechanism, whicl. consists on the
rynchronization at given dates, of event display in several race windows. This
mechanism, currently simulated, is intended to be used with the global clock. Traces are
also stored in files in which they could be re-examined using the CDS graphical interface.

r[] CDS Event Display <Transputer xx> 1
(uit) (Gear) (Prayback) () (Raviist) (Nextrdv) tme: —am
with ransputer: B a: [ value: R

L =l

-Figure 7- CDS trace display window.

Other functiors are under development, among which, event time-stamping and ordering
using a global software clock, and general breakpoint setting.

V. Conclusion.

The current version of CDS enables the programmer to debug his program at a low level.
Now, we are looking for technics to specify high level process behaviours, such as
general breakpoints. The most important difficulty we encountered when designing CDS
was how to identify the problems incurred by the interactions between CDS and its
environment (step 3). We did not find an efficient strategy for that purpose. In fact, these
problems are not the same from onc programming environment to another. However,
there is a set of problems faced by most of debugger implementors, such as the
interference with user processes, faimess, conpestion, readability , and cooperation
between the components of a DDS. Another non-trivial problem is how to determine the
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basic requirements according to the programming environment and most of the bugs
everyone wants to finds out.

Acknowledgement. Special thanks 1o Nora Boukari, Luis Trejo, Jean-Marc
Adamo and Léa-Flore Kanga for their help.
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Abstract

The objective of this paper is to discuss the design and implementation of an interactive
debugging system for a functional language which serves as the host programming language
for a software package suitable for graph theory applications. The design and implementa-
tion of the programming language is beyond the scope of this paper[2]. But in designing and
implementing the command language for the debugger, we have tried to make its format as
similar as possible to the format of the host language while keeping its syntax clear, logical,
simple and flexible. Additionally, a brief description of graphical interface, that is intro-
duced in the system for visualization of graphs, is given. The design and implementation
of the debugging system explained in this paper could be applied in the development of a
debugging system for any language.

1 Introduction

The debugging syst:m implemented supports a range of commands wide enough to fulfill the
requirements of a good inwractive debugging system. The user may define breakpoints at
lines or function calls within the program which cause execution to be suspended at these
points. After execution is suspended, other debugging commands can be used to analyze the
progress of the program and to diagnose errors detected. Then execution of the suspended
program may resume. The user can step through the program executing one line at a time or
follow the execution of the program even inside other functions called within the program being
debugged. The user can also trace variables so that when a variable changes its value, the new
variable value wil! be displayed. System commmands and instructions of the source language can
be executed from within the debugger environment. It is also possible to display the source
code of the program being debugged, complete with st ment numbers, information about the
program itself (name, size in number of lines, current line of exccution), and information about

*Supported in part by the NSF unde r grant CDA-HRO5910.



the status of the debugger (breakpoints, variables traced). A function is provided for displaying
the values of variables and it can also execute function calls of the source language and display
their results. Additional capabilities include removing breakpoints defined previously, removing
variables so that they will no longer be traced and setting aliases for all the debugger commands
to make the command language syntax simpler [3]. Lastly, an on-line help facility is provided
to assist the inexperienced or occasional user.

To improve the friendliness and power of the debugger further, graphic capabilities were
included. By introducing graphics in the debugging system, it can be transformed from a
linear, command-line debugger tc a visual debugger. Most of the data structures used in graph
theory, esnecially graphs, were always best represented graphically; thus a visual debugger
helps th. :ers to visualize the reoresentation of the data structures defined in their programs.
Additionally, they will be able to trace variables visually, and as a result they will improve their
ability to notice and understand the changes on the data structures used.

2 Significance of the Problem

It is obvious among all programmers that there is a great need for a useful interactive debugging
system when writing and executing programs. The main purpose of this debugger is to provide
programmers with facilities that will help them in testing aud debugging their programs and,
as a result, make the process of executing a program less painful and less time consuming. In
this particular area of application (graph and set theory), having to deal with large graphs and
sets makes it hard to follow the execution of a program and trace those structures. In addition,
as a program grows in size and complexity, the importance of executing it in a sinall number
of instructions each time, becomes more apparent.

The debugger can also be used as a learning tool. Many times, programs provide only the
final result of the application of an algorithm to a problem, omitting important intermediate
results. A user who is not familiar with the algorithm can follow the execution of the program
step by step with the use of the debugger, discover how and why data structures change their
values to produce the final result, and thus understand the logic of the algorithm much better.

3 Design Considerations

In designing and implementing the debugger, we considered the following two parameters : the
user and the source programming ianguage.

The first parameter suggested that the command language should have a clear, logical and
simple syntax and be as flexible as possible. 'I'he commands were chosen to have a meaningful,
easy-to-remember names (HELP, LIST, PRINT etc) . They are simple rather than complex
with as fe.v parameters as possible. Commands are automatically checked for syntax and logical
errors and if any are found, the debugger provides a meaningful error message. lHowever, in
order to simplify the command language, if the error is not crucial and the debugger is able
to figure what was the intending command, it will execute it. Default values are also provided
for most of the parameters. The fiexibility of the command language lies on the fact that the
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use of punctuation characters such as parentheses, quotation marks, slashes and semicolons was
minimized. Also, through the use of aliases, the user can abbreviate commands and make the
command language even simpler.

The debugger is also related to the source programming language and to the interpreter
that executes it. The debugger command language was kept similar to the source programming
language as long as it was not increasing the complexity of its syntax. As a result, the debug-
ging environment is familiar and friendly to the user. Additionally, as programs of the source
language were executed by an interpreter, the debugger itself works as an interpreter. In fact,
the program being debugged is executed by the source language interpreter and most of the
functions written for the interpreter are used by the debugger(1].

4 The Graphical Interface

The graphical interface provides the user with the ability to display directed and undirected
graphs as well as the weights of arcs and vertices. Graphs can be displayed in different ways
such as with vertices placed symmeirically, horizontally, vertically and circularly. In addition,
other special graphs such as outer planar and bipartite can be displayed in an appropriate
manaer|2]. The form that the graph will be drawn is selected from a pull-Aown menu or entered
s a command. The graphical interface allows the user to move vertices and arcs and to change
“eir color and weight. It also provides the user with the ability to add »ad delete vertices
.d edges. All these operations to manipulate a graph can either be selected from the menu or
entered as a command.

The graphical interface is very important for the debugging facility. At any point of the
program execution, the user is able to display a graph and understand how the program exe-
cution affects a graph. The changes that occured in the graph (edges and vertices deleted or
added ) become more noticeable. We believe that a user can understand the structure of a graph
much easier by visualization rather than by textual representation and that is why we consider
the graphical interface a very important feature of the debugging facility. With ihe use of the
graphical interface, the user is able to draw a graph, notice the changes that occured in the
graph and understand the changes much better. In addition, it makes Lhe whole system more
user-friendly and easier to use.

5 Interpreter Modifications

Since the debugger executes the language commands by invoking the interpreter, the interprete:
has to be modified so that it performs the interpretation and at the same time, it complies with
the debugging commands issned. In a way, the interpretation must be synchronized with the
execution of debugging commands. The only debugging commands which affect the interpreta-
tion of the source code are those which suspend and resume program execution, namely stop for
suspension of execution an:' next, step and continue to resume execution. The interpreter,
after being invoked by the debugger, interprets the source code until a breakpoint defined by



a previous command suspends its execution. At this point, the user can enter any other de-
bugging command which is directly interpreted by the debugger until the interpreter is invoked
again by a next, step or continue command and execution is resumed.

To implement this switching of the interpreter between suspension and invocation, we used
two more flags to control the invocation: the step_flag is set to true if the interpreter executes
in step mode and the nezt_fleg is set to true if the interpreter executes in next mode. The
suspension is controlled by the use of breakpoints. The only place in the execution where the
interpreter is suspended is during the read of a new source line. At this point, if there is a
breakpoint defined at this line, execution is suspended and control passes to the debugger.
Also if the debugger operates in step or next mode, again execution is suspended and both
flags are set to zero. If a continue command is issued from the debugger environment, the
debugger invokes the interpreter and passes control toit. This p.ocess continues until e::ecution
terminates or the user exits the debugger.

With these features added, the interpreter has the additional capability to suspend and
resume its execution depending on the debugging commands issued by the user. In other words,
the control of execution of the program switches between the interpreter and the debugger and
the whole process is controlled by the debugger.

6 The Command Language

The current version of the debugger supports the following command language:
run
starts execution of the prugram to be debugged, for the first time.

rerun
repeats execution of the program. All debugging specifications(breakpoints, traces) used in the
previous session are saved and used in the new session.

help [command)
invokes the cn-line help facility. If a debugger command is specified as a parameter, the help
file for this command is displayed. It defaults to a brief list of all the debugger commands with
explanations.

list [linel,linc?/
displays lines of the source code of the program being debugged. The default lists the current
execution line plus 10 more lines after; listline I displays the line specified by the parameter;
list line ! linc? displays the lines in the range specified.

continue
resumes execution of the program after a breakpoint,



exit, quit, bye
returns control to the system from where the debugger was invoked.

system (system.command)
executes a system command from within the debugger environment.

next
executes the next line of the source program without entering any functions called in that line.
It suspends execution after that line is executed.

step
executes the next line of the source program, stepping into functions called in that line. It
suspends execution after that line.

print {variable | function_call}
the current value of the variable is displayed if the parameter specified is a variable. If the
parameter is a function_call, the function is executed and the result is displayed.

stop {at linc | in function_namec}
stop at line defines a brea' soint at the specified line; stop in function_name defines a break-
point at a function. The execution is suspended immediately before the specified line or a line
containing a call to a function specified by function_name.

trace variable
traces the changes of the values of the specified variable. Whenever there is a change to the
value of variable, thie debugger will display the variable, its new value and the line number at
which the change had occared.

remove { stop at linc | stop in funetion. name | trace variable)
remove stop at line removes a breakpoint defined previously at the specified line.
remove stop in function_call removes a breakpoint previously defined in the specified fune-
tion_name.
remove trace variable suspends the trace of the specified variable.

alias identifier command
sets identifier an an alias for the spocified debugger eommand.

show [stop | trace
when the parameter is stop, the debugger will display all current breakpoints (for lines and
functionn) whereas when the parameter is trace, it will display all variablos specified for trace,
The dofault displays all information mentioned above,



lila lila_function_call
executes a function call of the source language from within the debugger environment.

display [line | flle | size)
displays some information about the program being debugged. The line option displays the
number and the source code for the line currently being debugged. The file option displays
the filename where the program resides and the size option displays the size of the program
in number of lines. The default displays all information above. This command can be easily
extended to display auditional information if it is required.

7 Data Structures

This section provides an outline of the most fundamental data structures used in the design
and implementatinn of the debugger.

The most important data structure used is the symbol table. The symbol table is a closec
hash table in which each bucket points to a list of table entries. Each entry contains a pointer
to a structure, which itself contains a value, and a list of variable names pointing to that value.
It also contains a pointer to the next entry in the hash table.

An activation record structure is used to hold the following information about each acti-
vation:

¢ a pointer to the entry of the function within the function table
e a pointer to the first line of code of the function

e a pointer to the next e of code to be executed by an activation

a pointer to a structure which identifies the data type returned by the function

e a pointer to the Jocal saymbol table of the function

the position within the next line of code to he executed
o a flag that represents whether the next connmand will come fromn a file or the terminal

the size of the function code in lines

the name of the file that contiains the sonrce cade for the function
e a pointer to the next activation record

To implement breakpoints at lines more effectively, a structure named PROGRAM wax
defined with the following fields:

o a string which holds the source code for the line currently debugged



e an integer specifying the line number of the line currently debugged

e an integer taking value 0 or 1 to denote wkhether there is a breakpoint defined at the line
currently debugged

e a pointer to the next line to be debugged

Two hash tables were designed to implement breakpoints in function calls and to trace
variables. For the function breakpoints, each bucket of the hash table holds the name of the
function, and for tracing variables each bucket of the hash table holds the name of the variable
to be traced. To avoid collisions, each bucket has a pointer to a link list of function names or
variable names which happen t~ collide in that bucket.

8 Further Extensions

The debugger at its present version has enough capabilities to aid users in testing and debugging
their programs in a very good degree. llowever, there are more capabilities that can be included
to improve this debugging system and make it more powerful, simpler and easier to use. This
section suggests some of these capabilities that can be added.

As a first step, the debugger can be improved by including some functious which will allow
users to define conditional breakpoints and breakpoints after a fixed number of instructions
has been exccuted. With conditional breakpoints, the user will define conditional expressions
that will be continually evaluated during the debugging session. The program execution will
be suspended when any of these conditions become true. Similarly, the user may define a
fixed number of instructions to be executed, after which the program execution will halt. A
menu-driven debugger will reduce the amount of information a user has to enter and remember.
Menus will have titles to identify the tasks they help perform and they must have an equivalent
action to the lincar debugging language. In other words, there should be complete functional
cquivalence between commands and menus,

9 Algorithm

In this section, we will provide a general algorithm used to solve the problem. Each individual
command of the interproter is executed by one or more separate function. Refer to the Ap-
pendix A for a description of each function.

create the token table

ercate the command table

read program (o be debugged snto memory
loop:

prompl the wser for command line

gel compmand, parse it and analyze token

if the command s



bye, ezit, quit : ezit the loop and stop
stop : set the breakpoints
run : start interpretation
rerun : ezecule again
list : display the specified lines of the source code:
help : invoke the help facility
systemn : ezecute the system command
remove : remove the specified breakpoints or traces
print : display the result of its parameter evaluation
nezt : ezecute the nezt line. Ignore function calls.
step : ezecute the nez! iine. Slep into function calls.
cont : resume ezecut:on until a breakpoint is encountered
trace : mark the specified variables for tracing
show : display breakpoints and traces
lila: ezccute a lunguage command from within the debugger
display: display the required information about the program
alias : sct the specified alias
golo loop

10 Conclusion

This paper describes the design and implementation of an interactive debugging system for a
programming language to manipulate graphs and directed graphs. We have successiully used
this implementation in debugging the planarity algorithm. In addition, it provides a brief
description of the graphical interface which allows users to visualize graphs., It also explains
how the design considerations of this system can be applied for the design of any debugging
system.

A Appendix

This appendix provides a brief explanation for the most important functions written for the
debugger. For cach function, we provide its name, its parameters, and a brief description of the
action that it performs.

Name: create_tokentable

Parameters: nonce

Purpose: inserts cach of the reserved words of the interpreter and its mnemonic constant
into a table,

Name: create_command_table
Parameters: none
Purnose:  inserts each of the commands of the debveger and its imhemonic constant into a



table.

Name: read_prog

Parameters: program name

Purpose: reads the program to be debugged into the memory. For each line, it stores the
source code, the line number and a breakpoin: flag.

Name: cget.token
Parameters: none
Purpose: gets the next token from the command line and saves it in the global variatle ctoken

Name: cget_char
Parameters: none
Purpose: returns the next character from the command line.

Name: clexan

Parameters: none

Purpose: performs lexican analysis of a token. The global variable ctok-type is an integer
constant and it can be a mnemonic constant denoting cither a string constant, a reserved word,
an integer constant, a constant denoting a function call or an identifier,

Name: hash

Parameters: name to be hashed

Purpose: applies the hash function to its argument and returns the position in the table to
be inserted.

Name: dblatop

Parameters: none

Purpose: deflnes a breakpoint at a line or in a function. When the breakpoint is at a line, it
finds the appropriate line and sets its breakpoint flag to 1. When the breakpoint is in a function,
it inserts the function name into a hash table which stores all functions where breakpoints were
sct.

Name: stopline

Parameters: none

Purpose: inserts a breakpoint at a specifie line. Starting from the first line of the program,
it finds the line where the breakpoint should be set and sets a breakpolnt.

Name: stop_function

Parameters: none

Purpoae:  after checking the syntax of the command line, it calls the appropriate function
which will insert the function nnme specitied for a bhreakpoint into the funestopa. table



Name: insert.in_funcstops

Parameters: a character string representing the function name where a breakpoint was de-
fined

Purpose: performs the insertion of the function name where the breakpoint was set into the
Juncstopa_table

Name: isstopfunction

Parameters: a function name

Purpose: returns 1 if the function name specified by its argument was set for a breakpoint
and 0 otherwise.

Name: dbl_trace

Parameters: none

Purpose: interprets the DBL command trace. It checks the syntax of the command line and
calls the appropriate function which will inscrt the structure name specified for trace into the
trace_table

Name: make.trace
Parameters: the name of the variable to be inserted for trace
Purpose: inserts the structure name specified by its argument into the trace_table

Name: is.trace

Parameters: name of the variable to check if is for trace

Purpose: returns 1 if the structure name specified by its argument was specified for trace
and 0 otherwise

Name: dbl.remove
Parameters: none
Purpose: removes breakpoints and traces, When a breakpoint at a line is to be removed,
its corresponding breakpoint flag is set to zero. When a breakpoint in a function or a trace is
to be removed, the function name or variable name is deloted from the corresponding hash table

Name: rmvdine

Parameters: none

Purpose: it removes a breakpoint at a line. After specifying the line whose breakpolnt will
be reme sed, it sets Qs atop field to zero and essentially removing the breakpoint

Name: rmvSetn

Parameters: none

Purpose: it removes a breakpomt in a funetion call. After locating this function in the fune.
atops_table, it removes its entry and thus removing the breakpoint in this funetion



Name: rmv.from.funcstops
Parameters: function name to be removed from the breakpoints
Purpose: it removes the function name specified by its argument from the funcstops_table

Name: rmv_trace

Parameters: none

Purpose: removes a variable that was declared for trace from the trace table (if this variable
was really for trace) or it prints an error message otherw;se

Name: bye

Parameters: none

Purpose: interprets the DBL commands bye , quit and exit. After assuring the syntactic
correctness of the command line, it terminates the current session of the interpreter

Name: dbl.help

Par-meters: none

Pu ose: interprets the DBL command help. After assuring the syntactic correctness of the
con.aand line, it opens the appropriate help file and displays its contents on the screen.

Name: syst

Parameters: none

Purpose: interprets the DBL command system. After checking the syntax of the command
line, it extracts the portion that will be executed and pass it to the system command 'system’
which executes it

Name: dbllist

Parameters: none

Purpose: interprets the DBL command list. After checking the syntax of the command line,
it lists the range of lines specified in the command line,

Name: dbl_print

Parameters: none

Purpose: interprets the DBL command print. The argument for the print command could be
an integer constant, a string constant, a variable structure, or a ‘unction call. After checking
the syntax, it detcrmines which one of these eases exists and prints the reenlt

Name: dbllila

Parameters: noune

Purpose: interprets the DBL command lila, 1t interprets any lila command from within the
debugger environment.



Name: dbl_next

Parameters: none

Purpose: interprets the DBL command next. It steps thought the program without entering
any function calls. At this point, only the nezt_flag is set to indiczte that debugging will be in
next mode

Name: prompt

Parameters: none

Purpose: it prompts the user for a command, parses the command, and calls the appropriate
function to execute the command. If the commaud is either step or next or cont it breaks out
of the loop, to continue the program interpretation

Name: dbl.run

Parameters: none

Purpose: interprets the DBL command run. 1t checks the command line, it initializes vari-
ables and flags and starts the interpretation of the program

Name: dbl.alias

Parameters: none

Purpose: interprets the DBL command alias to sct aliaset for the DBL commands. After
checking the syntax of the commandine, it inserts the alias with its mnemonic constant into
the hash table of function token

Name: dblshow

Parameters: none

Purpose: interprets the DBL command show to display ail current breakpoints and traced
variables. First it displays all line breakpoints by examininy the stop field of each line, then it
shows all function breakpoints by scarching the funestops_table and finally it displays all vari-
ables under trace by scarching the trace_table

Name: dbldisplay

Parameters: nonc

Purpose: interprets the DBL command display which displays somne useful information about
the file being debugged
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X Window System Interface for CDBX

Peter A. Rigsbee

Cray Research, Inc., Eagan, MN

Abstract

CDBX is a dbx-based debugger for CRAY
UNICOS systems. CR! initially implemented the
basic iinc-oriented version of CDBX, and in 1989
added an optional X Window System interface.
This paper describes the manner in which this
interface was added, which is unlike the approach
taken by developers of xdbx or xgdb. The
paper also describes how this approach simplified
subsequent work to allow the X interface 10 run
native on a workstation.

Background of CD3BX

From the user’s point of view, CDBX appears to
be nothing more that an implementation of the
BSD dbx debugger. As with most dbx imple-
mentations, Cray Research has added a number of
extensions. Key improvements include beuer
Fortran suppon (including array syntax), support
for multitasking and segmentation, improved
links between symbolic and absolute debugging
(new commands that translate between machine
addresses and symbols), and improved on-line
help and error messages.

Internally, however, CDBX is quite unusual. Pan
of CDBX consists o1 code from the BSD 4.3 ver-
sion of dbx, and part consists of code from an
earlier Cray Research dcbugger known as DRD.
This unusual combination of sofiware is compli-
cated by the fact that dbx is coded in C and
DRD was coded in Pascal. But by combining
code from exisling projects, il was postible to
quickly develop and dcliver a product to custo-
mers. In fact, development of CDBX began in
March 1988, and a beta test was held a1 several
custoiner sites only five months later, in August
1988. The first release of CDBX was included in
the UNICOS 5.0 relcase in March 1989. It would
not have been possible to have carricd oul a tradi-
tional "pont" of dox 10 the CRAY in the same
timcframe.

Development of the . Window System interface
for CDBX began in January 1989, and was first
released in October 1989. Development staried
with prototype software provided by one of the
Cray developers working on the X Window Sys-
tem itself. Using the prototype as an experimen-
tal vehicle, a design was devcloped which
remains in use today and will be described in this

paper.

User Level

Altached (o this paper are two screen dumps from
CDBX sessions, showing the key componcnts of
the X Window System interface. The first shows
the basic window displayed by CDBX. When a
user starts up the X interface, he gets a window
containing several sections. These include two
groups of buttons and three display windows,

The top group of butons (quit, help, and
interrupt) control CDBX itself and cannot be
removed or changed. The remaining all generaic
CDBX commands, end are completely under uscr
control. The user can add buttons, remove but-
tons, or even remove the entire group and build
his own set. Cerain butons opcrate on text
selection, some on line selections, and some bring
up pop-up menus containing additional choiccs.
User-defined buuons can be CDBX commands or
user-defincd aliases, and can make use of text or
line selections.

There are three text sub-windows within the
CDBX window. The top window is called the
“information window" and shows status informa-
tion about the debugging session, This informa-
tion is updated as needed and shows information
oblainable with CDBX swatus commands. The
middlc window is a rcad-only "source window",
which displays the current file. The user can st
breakpoints or select variables or other expres-
sions by using the mousc; these sclections can
then be referenced by command buttons, The



bottom window is & read-write "session window”,
which is nothing more than a line-oriented CDBX
session. When a command bution is pushed, for
example, the associaled debugger command is
echoed in this window followed by any output for
that command. Any keyboard input to the CDBX
w:ndow is treated as input 1o the session window
and is passed o the debugger.

There are also several “pop-up™ windows that can
be displayed as a result of certain actions. Some
of these are shown in the other screen dump. The
help button brings up an ca-line help window,
containing functionally-oriented usage informa-
tion. A CDBX display command allows a
user o identify certain variables whose contents
should be updated each time the debugger reaches
a breakpoint or otherwise "stops”. These vari-
ables are displayed in a separate window. And
several other CDBX commands (such as sh and
gripe) result in pop-up windows being
presented (o the user.

We have found that people use the X interface in
a2 number of ways. i is particularly useful for
new or casual users, who appreciate the default
set of command buuons highlighting the impor-
wnt commands. Many experienced CDBX users
use the X interface primarily for the source
display, and find themselves typing commands
more often than using the buttons. Other cxperi-
enced uscrs have developed their own set of but-
tons that perform key or repealed [functions
specific to their applications. The interface is
well-designed from the sense that it lets people
casily use it the way they wanl, rather than forc-
ing them into a particular mode of operation.

Design

Now lct us look at the inlernal design. Unlike
some public domain X intcrfaces, we had the
advantag. of being able to control the enlire pro-
duct. Wu felt therc were two different
approaches vv¢ could take. We could incgrate
the X inwife with the traditional debugger, pro-
ducing a windowed debugger. In this approach,
the X interfacc is part and parcel of the debugger,
producing a very powerful product, but limited to
thosc uscrs who are using the X Window Systcm.
Or we could produce a scparae X interfuce, but
have it work closcly with the traditional line-
oricntcd dbx-style debugger. We chose the
latter approach, primarily because we had and
still have a significant nced for a linc-oricnted
debugger.

The next decision was whether we should intro-
duce a new user command for the X interface.
Unlike many other vendors, we chose to use the
same command 1o invoke either the X interface or
the line-oriented debugger. This command would
figure out what the user wanted and do it. It
would not be necessary for the user 1o remember
and use two different commands.

internally, though, we kept the two parts of the
product separate, When CDBX is staned, a
"driver” program (stored as /usr/bin/cdbx)
stans up and examines the environment and com-
mand line 10 deicrmine whether it should slart the
X interface or the line-oriented debugger. If the
X interface is being run, the driver execs an
executable called cdbx.x. This process then
performs 2 fork and an exec with an execut-
able called cdbx.l. As a result, the user has
two processes running “the debugger”. This split
has a major advantage for the user of the line-
oriented debugger. he does not have to pay for the
additional memory overhead requirad for the X
Window System code that he will not be using.
There are other advantages in terms of operating
system scheduling and throughput

How do these processes communicale? There arc
three connections established when cdbx.x
does its fork and exec of cdbx.l. A
pty/tty pair is opened by cdbx, passed as a
command-line oplion 10 ¢dbx.x and cdbx.1,
and is associated with the stdin and stdout
of cdbx.l. These connections allow com-
mands 0 be sent W and output received from
cdbx.1.

In addition, a onc-way pipe is opened for dal
from cdbx.l to cdbx.x. This pipe is used o
send packets of information for the X interface 0
usc in updating the windows beirg presented 1o
the user. These packets use a simple message
format with a number of different packet Lypes.
The following list shows the packel Lypes
currently in usc:

typedef enum ({
P_ALERT,
P_DELETE,
P_DISPLAY,
P_EDIT,
P_EXECUTING,

/* breakpoints *,

/ﬁ ./

/.

user program
executing */
P_FILE,
P_GRIPE,
P_INFO,
P_MENU,

/* information */



P_SH, /* shell xterm */
P_STARTX, /* start: -r fails */
P_UNDISPLAY,

P_UNMENU,

P_QUIT

} Packet_type;

P_INFO and P_EXECUTING are used 10 pass
information to the X interface, to update the
information windo: or the cursor, and the rest arc
used to direct the X interface 0 perform some
particular action (such as creating or destroying
pop-up windows, adding items 10 pop-up menus,
and so on),

Tradeofls

The use of the pipe and the message packets has
some very significant advanitages. The primary
one is that it helps isolale the two programs from
one another, and provides a clear definition for
their interface. It is not necessary for cdbx.x 10
execute “secrel” commands to get informalion,
nof is il necessary for cdbx.x lo either parse
commands entered by the user nor to parse the
ASCI] output from cdbx.l. Intemally, it
avoids the unmanageable use of global variables
1o silently pass information between the two pro-
grams.

The main disadvantage is it makes certain opera-
tions more difficult to implement cleanly. For
example, cdbx.x is constrained 10 performing
aclions that can translate to commands. For
exampie, with many windowed debuggers, you
can double-click on a variable to see its value.
This would bc awkward to implement in CDBX.
Another cxample of this is the CDBX display
commmand, which has a quite complicatcd imple-
mentation (although this is not evident to the
\iSer,)

Distributed CDBX Experiment

In the spring of 1991, an experiment was carried
oul with the X in.~rfacc. In this experiment,
cdbx . x was divided 1nto tlwo exccutables:

- workstation component

- CRAY componcnl
The workstation component consisted of the X
interface code that handles the windov: events,
keyboard input, and so on. The CRAY com-
ponent, which was very small, consisted only of
the code that did the fork/exec and sct up the

communications with cdbx. 1.

In the workstation component, calls were then
added to usc two sets of fairly simple library rou-
tines. The original code that handled reading and
writing from pipes and standard files was
replaced by calls to library routines that handled
simple message passing between (wo processes
across sockets. And code that opened and read
from source files was replaced by calls to a pack-
age providing user-configurable access to remote
files. No changes at all were made 10 cdbx. 1.

When the coding was compleie, it was possible 10
run CDBX in a distributed manner, in which the
X interface ran on the workstation (specifically, a
Sun SPARCstation) and the "debugger” ran on
the CRAY. This produced some interesting and
encouraging results, The results were for simple
7/ ~ascs, consisting of a shon scenario of about
v+ ZDBX commands.

First, we looked at user CPU time on the CRAY.
For most users, workstation CPU time is "free”,
once they have acquired the workstation. A user
who heavily uses his workstation CPU pays no
more than one who lets it run a screen saver all
day. But CRAY time is usually paid for, with
cither real or "funny” money, and user CPU timc
is often the major component of the cost. With
the distributed version, user CPU time decreased
significantly. With the distributed version, uscr
CPU time was .0981 seconds. With the same ses-
sion for an equivalent CRAY version, user CPU
time was .5685 seconds. The diffcrence is largely
due 10 X Window System initialization, but there
was a small time savings for each command cxc-
cuted as well. Now atl most sitcs this wouldn't be
much money (maybe a few cents), but over the
course of many, long sessions, it would add up.

Second, we looked ab user response time. Thesc
timings werc all made on a fairly large memory
(32 MW), two-CPU CRAY Y-MP, which was not
heavily loaded. These parameters all favor the
non-distributed  versicn, since swapping of
processes is not likely. As a result, the distributed
version had poorer response time (an average of
.320 seconds versus 146 seconds for the CRAY
version). The difference was noticeable as [ went
back and forth between the two versions, but the
responsc time for the distributed version was
quilc acceptable by itself, On a smaller CRAY
system or onc morc heavily loaded, we would
capect the response time for the distributed ver-
sion to improve relative 0 the CRAY version,
perhaps even running faster,



Third, we measured data transfers and messages.
When a message is semt 10 the CRAY, it inter-
Tupts the sysiem and requires the operating sys-
tem (o0 handle it Some people feel that X Win-
dow System clients should not run on CRAY sys-
tems because of the high level of raffic caused by
the many events triggered by mouse movemen: or
keyboard entry. With our experiment, we meas-
ured the traffic with both the CRAY version and
the distributed version. As expected, the distri-
buted version showed significantly less traffic.

For example, simply staning up the debugger
showed the following data With the CRAY ver-
sion, there were 71 messages containing a towal of
26372 bytes of dawu sent from the SUN 10 the
CRAY, and 68 messages containing 22316 bytes
of data sent frer the CRAY to the SUN. This
traffic was primarily X Window System traffic
r»:sing a large resource file o the CRAY and ini-
tializing the complex windows in CDBX. By
contrast, the distributed version showed 14 mes.-
sages with only 203 byics sent from the CRAY to
the SUN, and ZERO messages sent from the
SUN o the CRAY.

Once the session was underway, there was more
traffic with the distributed version, but sull much
less than the CRAY version. For the simple, en
command scenano, the CRAY version saw an
additional 87 messages containing a toul of
12496 bytes sent from the SUN 10 the CRAY, and
93 morc messages conuining a total of 24196
bytes sent from the CRAY 1o the SUN, Many of
these were X events resulung from keyboaru
enury and mouse movement. By contrast the dis-
ributed version had 10 messages (onc per com-
mand) with 4% bytes scnt from the SUN w the
CRAY. and 56 mecssages with 773 bytes scnt
from the CRAY w0 the SUN.

Summary and Conclusions

The X Window System interface for CDBX has
been very successful. It is heavily used and pro-
vides a simple introduction 0 a product with an
othcrwise complex interface. The design has
worked well: there have been numervus enhance:
ments to the interface since the onginal vesion,
and they have fit in well with the onginal design.
And the design allowed for a distributed version
of the debugger 10 be developed with a minimum
of waorh. While 1t 1s not clear at thas ume of such a
product will ever be relcased, resalts show that n
has the potenual of reducing load on the CRAY
and cost to the end user.

Credits

Most of the development work on the CDBX X
interface was performed by Barbara Smith. She
devloped the design and implemented the initial
versions of the interface and several subsequent
major enhancements. The prototype version of
the X interface (mentioned above) was developed
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Abstract

A major limiwation of current debugging iechniques is the lack of a debugging language. Unix System V Release 4
(SVYR4) introduced a debugging language, DWARF. A Unix Iniernational Programming Language Special Interest
Group (PLSIG) is modifying and enhancing DWARF, addressing the debu irly\gknecds of the language tools
community. The PLSIG hopes that interested pantics will see the advantage of D F and conform (o this defacto
standard.

This paper discusses the current status of the DWARF language including:
= SVR3 and SVR4 file format comparisons,
« Communication between generalors and consumers,
* Innovations which underscore DWARF's effectiveness, and
* Impact DWARF will have on compiler and debugging tools.

The new and improved DWARF debugging language will be uscable on hardware platforms ranging from
microprocessors to supercompulers s the debugging language of choice.



Introduction

DWAREF is s debugging information format used in Unix!
System V Release 4%4) for ransmitting accurate source-
level information between and consumers.
Compilers, assemblers and linkers are defined as generators

Debug‘;' tools (debuggers, profilers, disassemblers, elc.)
are de &S CONSUIMeETS.
Figure 1. DWAREF Definition
DWARF
Debugging information format used
in Unix S V Release 4 for

transmitting accurate source-level
informatioa between generators and
consumers.

This paper investigates DWARF as a dcbugging language.
However, o understand the advantage of DW ARF, onc must
first look at object file formats and how they convey
debugging information to the consumers. This paper explores
the differences between object file formats and then discusses
the DWARF language format. Finally the r investigates
the flexibility and extensibility of the DWAREF language and
howldmese features adds a new dimension 1o the debugging
world.

History

AT&T Bell Labs introduced DWAREF in April 1990. Shortly
thereafier a Unix Inicmatonal Programming Language
Special Inierest Group (PLSIG) formed w0 foster the
development of language tools. The gails of the PLSIG arc:

1. Devclop debugging standards so that gener-
ators and consumers could be developed in-
dcpendently and work together correcly.

2. Devclop debugging standards which ade-
quately handle the needs of most program-
ming languages.

DWARF nas been selected by the PLSIG as a debuggin

language lhrou&h which their gouls could be accomplished.
The onginal DWAREF introduced by AT&T has been refined
nm‘ih’nhshed. by the PLSIG and is known as DWAREF version
0. While 1 is possible 10 suppon nnz computer language with
DWARF, version 0 focuses on C, C4++, and Fortran, Version
| is expected to be completed in 1993, It will add
enhancements W the current definition, while rewining
hackward compatibility, and expanding it language fixus,

1. Unix ix a registered trademurk of UNIX System
Laborutwies, Inc, in the United Sutes snd other
countnes,

Debugging Strategies

Debugging information is included in executable files. Prior
1o the introduction of DWAREF as a debugging language, the
inclusion of debugging information was not handied
cleganuly. Debugging information was intertwined in object
files rarely providing an accurate source level pictre. Strict
contracts bctween the generator and consumers were the
norm, Compilers generaled special assembler directives to
describe the source language. Compilers were dependent on
the assemblers understanding of the ?pecial directives 10 pass
information into the executable files. Assemblers were
required to generated tags for unnamed structures in the
source code, providinf misleading source pictures to the
consumers. Additionally this method typically supportcd a
single high level source language. Thus, when debugging
techniques changed or ncw language features werce
introduced, enlire software packages were re-wrilien. This
proved 10 be a weak and poorly defiued approach to
debugging with the consumer and gencrator tightly coupled
and wotally dependent upon each other.This is very much the
case in the Unix System V Rclease 3 (SVR3) Common
Object File Formai (COFF) files.

SVR4 and DWARF offcr a new approach for conveying
source information between generators and consumers. The
new approach successfully addresses many of the problems
identificd with wtraditional methods of transmitling source
information o debugging tools. The SVR4 Exicnsible
Linkage Format (ELF) provides a flexible siorage mechanism
which allows generators to use the DWARF language 10
communicalc a8 more detailed source level picture 0 its
consumers. DWAREF is flexible enough to handle any number
of source langunges, and is casily extensible to handlec new
debugging techniques and fcatures. Equally imponant SVR4
and DWARF climinatc thc number of contracts between
gencrators, such as the compiler, assembler and linker,

Object File Formats

COFF

As mentioned carlicr, pre-SVR4  AT&T  systems puass
information to consumers using COFF file format, The COVE
file formar is bused on a swtic design, and consists of K
sections, 4 required sectuons and 4 optional sections, Figure 2
illustrwtes the layout of the sections in a COFEF file, The
sections are required 1o appear in the order shown. The
required sections wre: File Header; Optional Header; Section
hemders; and Raw section dae, The remaming sections e
optional,



Figure 2. COFF File Format

File Header

Raw Data for Section 1

Raw Data for Section n

Line Numbers for SecL n
Symbol Table
String Table

COFF file scctions are traditionally used excluiively for text,
data, and miscellaneous items such as comments. There is not
a predefined section dedicated o debugging information.
COFF based gencrators are limited to gencming dcbug
information that can be stored in the predefined COFF line
number structure and the symbol table structure. In addiuon,
since the symbol table and line number section holds all
debugging information the generator must understand and
produce a unique sct of special pre-definad symbols to
describe source structures zuch as inner blocks, and complex
daw strucwres. These unigue pre-defined sy nbols must be
recognized by Lhe assembler no that correc! information is
passcd W the consumers. This approach iorms a highly
dependent relationship between the gencrators (compiler and
assembler) and limits the information which can be passed o
the consumer. Lastly COFF was written with the C
rrogamming language in mind, it is very difficult to ald
features required o uatcly support other languages.

ELF

Unlike COFF, ELF filc sections are not limited in the same
manner as COFF's predefined line number whle and symbol
table. ELF is similar to a giant conwiner for information, The
conuiner is split into sectiona for ific information. These
sections include but are not limited to the traditional text and
daw. Sections can also be defined by the operating sysiem or
can he delined by the user. Thus specific information, such as
debugging infomation, ix placed in & unique and separate
section of the object file. ELF does not impase inter-section
dependencies. Figure 3 depicts the ELF File Format,

Figurc 3. ELF File Format

EIf Header
Program Hcader Table
Section 1

Section n

Section Header Table

Dcbugging information is self contained in the ELF .debug
and .line sections. The .debug section conlains source
information depicted by the DWARF language. The .linc
section conuains source line information for associatling
source files with the machine instruction addresses in the
executnble, The sclf conwined debug information, allows
producers 10 use preexisting directives to creatc the
debugging information in the object file, unique assembler
direcuves 1o handlc debugging inlormation are not required.

DWAREF Debugging Language

This section presents an introduction to the concepts and
information availabic in DWARF., This does not exhaustively
describc DWARF bul is intended 0 give a broad
understanding of the format. For further information the
reader should refer to thr DWAREF specification| DWAY1 |,

Language Structure

DWARF as a Lmguage docs not fuvor o specific
programming language, rather it is media for communicating
accuraie  source information  between  generators  and
consumers. DWARF is an open ended language allowing for
addition of ncw information as new languages or new
debugger capabilities arc introduced.

Source language information is passed W e consumer
through a low level represeniation known as a Debugging
Information Entry (DIE). Ench DIL describes a single cnlity
in the source progrum (variables, subroutines, elc.). A series
of DIE are used w describe an entire source program. Each
DIE may parent or own onc or more DIE. The parenting
concept  provides @ means  of desceribing  complex
programiming struclures and source file inter-relationships,
All DIE owned by the sume parent form a sibling chain, Lach
sinling refercnces other DIE in the chain, The chun is cmded
by a null sibling reference. This parenting concept torms g
trec  structure  describing  the  source  program - which
consumers  can  casily traverse  when  secking sounce
information. The DIE describing the compilation unit i the
purem of all subsequent DIE,



Debugging Information Entry

Each DIE consists of a dic length followed by an identifying
tag name followed by one or more attribules. DIE format is
pictured in Figure 4.

Figure 4. Debugging Information Entry.

hex_offset:<decimal_length>TAG_tagname
AT_aarname(value)
AT_aumname(value)

The DIE length is a 4 byle unsi integer whose value is the
total number of bytes in the DIE. A DIE length less than 8
bytes represents a null or padding DIE. The padding DIE is
used 0 satsfy alignment constraints imposed by Lhe
archilecture. A 2 byle tag name identifies the class of
information in the DIE. The list of reserved lag names arc
listed in Figurs 5. The DWAREF specificalion has assigned a
value 0 cach reserved tag name. In addition 10 the reserved
1ag names, applicalions may define tag names an., valucs in
the range TAG_lo_user through TAG_hi_user without
conflicting with current or future system-defincd tags.

Figure 5. Tag Names.

TAG_array_type
TAG_compile unit
TAG_enumeration_type
TAG_format
TAG_global_varishle
TAG_imporied_doclaration

TAG_class_type
TAG_entry_point
TAG_formal_parameter
TAG_global_subroutine
TAG_hi_user
TAG_inline_subroutine

TAG _label TAG_lexical_block
TAG_lo_usecr TAG_local_vanable
TAG_member TAG_member function
TAG_padding TAG_pointer_tyjx

TAG _reference _type
TAG_source_file
TAG _struciure_type
TAG _subroutine_type
TAG _union_type
TAG_variant

TAG_set_type

TAG _atring_type
TAG_submatin:

TAG _typedel
TAG_unapecified_parameters
TAG_with_sumt

Altributes are valuc/name pairs describing the characleristics
of a singlc source entity beinmdcﬁncd by a DIE. Attributes
arc the mcans by which DWARF:

s provides consumers 8 method w find the location of
program varinbles,

e determines array Subscript bounds,

e calculnwes the retum address of 4 subrounne,
e finds the base address of e suwck, or

*  determines the name of variables.

Auributes are represented as a 2 byte name field followed by
the appropriate value. A list of reserved attribuiec names is
included in Figure 6. Similar 10 tags, the atwribute list has a
user defined range, AT_lo_user through AT_hi_user.
Applications may define the use of attributes in this range
without conflicting with the sysiem-defined values.

Figure 6. Auribute Types

AT_bil_offset AT_biL_size
AT_by'e_gize AT _comp_dir

AT _deriv_list AT _discr

AT _discr_value AT_element_list
AT_frame_base AT_fund_rype
AT_hi_user AT _high_pc
AT_import AT _incomplete
AT_language AT _lo_user
AT_location AT _loclist

AT _low_pc AT_member
AT_mod_fund_type AT _mod_u_d_type
AT _name AT _ordering
AT_producer AT _sibling
AT_suart_scope AT _stride_size
AT_string_length AT_stmt_list
AT_subscr_dala AT_user_dcf_type
AT_visibility

Aturibute values arc onc of the following forms:
« address - location in address space,
» reference - member of dwarf description,
e constant - uninterpreted dota,
* block - arbitrary number of bytes, or

¢ string - null-icrminated string,

Attributes may only assume the valie form os specificd in the
DWARF specification. The form of the value is encoxded in
the atribute name. For example the AT namc attribute s
always of form string. DWARF defines a set of forn
encadings which are appropriate for ench atribute type. To
mainwin the Aexibility and extensibility of l)WARr-'. mosi
encodings huve a user definable runge, tor applicanon
specific information,

Example

It would be much w difficult to expluin cach aitribute 1
detiil, Thus, the following example is o give the render the
nppummil{ 0 look at DWARE language gencrited lor a
stmple C languape ngrmn. An eftort has been made 10
annotate the DWARFE language, pomting ot detinly ol
micrest. The example dllustrates sihhing chins and 1the DI
format.



Figure 7. DWARF Examples
C Language Source Code
main (argc, argy)
int argc:
char *argv(];
int k=10;
{

int =3;

o
re:

=k

kwd;

DWARF REPRESENTATION

0000:<43>TAG_compile_unit
AT_sibling (0x14c)
AT_name("test.c")
AT_language (Lang_C89)

AT_low_pc (x2035C) (1)
AT_high_pc(x20360)
AT_stmt_list (0x0000) (2)

002b:<47>TAG_global_subroutine
AT_8ibling (0x145)
AT_name ("main")
AT_fund type (FT_integer)
AT_low_pc (0x2035¢)
AT_high_pc(-x203b0)
AT_comp_dir(“/homa/mine")
AT_producer (“"name/version")

005a:<38>TAG_formal_parameter
AT_sibling (0x080) (3)
AT _name ("argc")
AT_fund type (FT_integer)

AT location(<11>0OP basereg (FP
OP_consat (0x10)

OP_add)(4)

Example Annotation

(1) AT_low_pc and AT_high_pc values are the relocated
addresses of the first machine instruction generated for the
compilation unit and the first machine instruction past the last
excc'luable instruction, rexpectively.

(2) AT_stmt_list sttribute value is an offset in te line section
referencing the first byte of infonnation for this compilation
unit. The dine section is uxed o correlate source-level

0080:<42>TAG_formal_parameter
AT_sibling (xaa)
AT_name ("argv")
AT_mod_fund_type (<4>MOD_pointer
MOD_pointer_to FT_char) (5)
AT_location(<11> OP_basereg (FP)
OP_cont (14) OP_add)

00aa:<24> TAG_ lexical block
AT_sibling (0141)
AT_low_pc(020374)
AT_high_pc (0x2039¢)

00c2:<25>TAG_label
AT_sibling (Oxdb)

AT_name ("here")
AT_low_pc {0x203RN)

00db:<35>TAG_local_variable
AT_sibling(Oxfe)
AT_name ("k")
AT _fundamental_type (FT_integer)
AT_location (<11>0OP_basereg(30)

OP_const (0Ox8) OP_add)

00fe:<24> TAG lexical block
AT_sibling (0x134d)
AT_low_pc(0x2037¢c)
AT_high_pc (020394)

0116:<35>TAG_local variable
AT liﬁlansdil33)
AT name (")")
AT_fundamentel type (FT_integer)
AT_location(<lT > OP tasereg(FP)

OP_const (0x12) OP_add)
13%9:<4> (6)
| 13d:<4>
: 141:<4>
145: <> (7)
14c: (8)

instructions,  ‘This

muchine cxecutable
information is useful for displaying source statements and
single stepping through a source program.

stilements  and

(3) The AT _sibling attribute is used W order lexical blocks,
subprograms, ete. in DWARFE.  In thiy instance the nest
sibhng is at location OxORO, which s the desceription ol
variable argv Arge and argy are both siblings of parent
subroutine maun,



(4) The AT _location atribute is used to build complex
addressing expressions. The AT _location value is of type
block, which is a count followed by a contiguous se1 of byics.
DWAREF defines a se1 of basic building blocks by which the
address of the object is deiermined. In the example 16 is
added to the value in the Frame Pointer (FP) register, Thal is,
the location of argc is stored at the address pointed to by the
Frame Pointer plus 16.

(5)The AT_mod_fund_type attribute defines variables which
sre described by applying one or more modifiers 1o a
fundamental type. In this case argv is described as a pointer
10 a pointer of fundamental type characler.

(6) A null record, the end of sibling chain.

(7) A padding record, to align debugging information to a 4
byte boundary. Some archilectures require alignment of
sections.

(8) Beginning address of the next compilation unil. Many
executable piecces of software are comprised of software
modules. Dwarf has the concept of compilation units, to
describe the modules making up the exccutable.

Compatibility

DWARF imposes constraints on additions to the standard and
uscr definitions so that all versions and implemcntations will
remain compatible. Figure 8 enumerates the compatibility
requirements.

Figure 8. Compatibility Requircments.

1. Newauributes must be added in such way
that a debug 3er may recognize the format
of a new attritute value without knowing
the content of that auribute value.

2. Ncw autributes may be included in any DIE
as long as the scrantics of any new at-
tributes do not alter the scmanlics of previ-
ously existing attributcs

3. Ncw lags may be created as long as the se-
mantics of the newly created tags do not
conflict with the scmantics of previously
existing wgs.

4. Ncw values may be created for the visibil-
ity attribute. Any ncw values so created
waould have language dependent meanings.

In addition, DWARF consumers cncountering application
specific nformation or specifications from latier versions are
expecied Lo ignore information which they are unable 1©
interpret. Finally, as previously discussed, users defining
application specific tags, atiributes, or attribute values are
expecied to define only those values specified in the user
ranges s as not 1o conflict with the DWARF specificauon,

These few compatibilily constraints ensure that all generators
and consumers of DWARF will successfully interoperate,
regardless of who and where they were developed.

DWARF’s Impact

Dwarf impacts source-level debugging.

1. DWAREF is a foundation for building a flexi-
ble, extendable, and effective debugging en-
vironment.

2. DWARF s a dehugging language providing
interoperability between generators and con-
sumers.

The DWARF language is a solid basis for building a
debugging environment. DWARF is easily expanded to
include new language feawres and application specific
features, by adding new tags, awributes and atiribute value
encodings. Additionally DWAREF serves as a solid building
block, supponing state of the art debugging techniques. As a
result, there is nc need for a single vendor 10 suppon a
multitude of debugging methods and languages. DWARF's
flexibility and extensibility encourages rcuse and
commonalily.

DWAREF is a debugging language providing intcroperability
between generators and consumers. DWARF i1s a scll
contained language using gencric containers and architccture

vided dircctives and instructions o convey information

tween generators and consumers. As a stand alonc
language, DWAREF is not dependent on a single operating
sysiem, or object file formal climinating the typical
gencrators and consumcrs contracts, As a result, generators
and consumers do not need to be built and maintained at a
singl~ silc, allowing sofiwarc developers to speciatize and
modularize softwarc packages, potentally decrcasing costs
while increasing software quality,

The PLSIG has put much time and effort into developing the
DWAREF language guarantecing that the featurces allowed by
the DWARF language arc implemented in the most cfficient
and compatiblc way. It is casy to adapt and conforim to
DWARF muak.ng it a dchugging languagc of choice. Thus it
can bc casily incorporatcd and used in most soltware
environments  from  the  micropracessor o the
supercompulers,

The Ul PLSIG

The PLSIG is a group of companics and individuals who are
interested in  enharcing  programming  languages  tools,
Currently the group is addressing delugging issues,  In
particular the group is expanding DWARE, including
recommendations and echingques  for greater efficiency,
additional tunctionalily and new programming languages,
The group meets every 6-8 weeks at locauons around the
country, with each meeting typically sponsored by one of the
members, I you are interested in more mformation about the
PLSIG or DWARFE contact Dan Oldman, chairman, email
oldmant dg-rtp.dg.com.



References

[SVABI90] Sysiem V Application Binary Interface
Unix Software Operation AT&T 1990.

(DWA91] DWARF Debugging Information For-
mat, UNIX@ Iniernational Program-
ming Languages Special Interest Group
1991.

{OCS90} Object Compatibility Standard, 880pen
Consortium Ltd. Release 1.1, April 1990



Watson: A Graphical User Interface
Environment for Debugger
Development

Randy Murrish, Cray Computer Corporation
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Abstract

In 1oday’s graphically oriented user interface (GUI) environment, the need for
high-quality, user-friendly interfaces to debuggers is almost as important as the
underlying capabilities of the debugger program itself. To support even the
simplest of user interfaces, developers must become experts in GUI design and
development. In rcsponsc to this problem, Cray Computer Corporation has
developed the Watson! GUI environment for application development.

Initially developed for usc with our enhanced debugging environment, Watson
has evolved into a general purpose GUI development system which allows
novice window-system developers access to complex GUI capabilities. Watson
provides a consistent, reliable, and tested object-oriented mlcrf.uc 1o a number
of GUI env:ronmcms including Athena Widgets, OSF/Motif2, and OPEN
LOOK?. This interface allows the Cray Computer Corporation debugger (bdb)
to run in any one of these three environments, without change to the
application. Watson provides for the changing irterface to the underlying GUI
selected, while maintaining a consistent interface for the application developer.

1. Watson uml txib are lmlﬂnnlk\ of Cray Computer Corpuration.
2. OSFMolil is & \rademark of the Open Software Foundaton, Inc,
1. OPEN LOOK i s registered nademark of USL in the United States and other counines.

Cray Computer Corporalion 1
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Prototyping debugger user interfaces with Watson is expedited with an
interface to the Tool Command Language (Tcl) developed by Prof. John
Ousterhout of the University of California at Berkeley. This interface allows
quick and easy prototype development with the additional benefit of reusing
most of the prototype code in the developed product. All of the user interface
in bdb is controlled through a set of Tcl procedures which are interpreted by
Tel into calls to Watson. This setup allows easy customization of the interface
by the developer and the end user.

Overview

Watson is a set of librari:s which supports an object-oriented approach to user
interface development. The object-oriented flavor of Watson closely matches
that which is found in the X Window System Toolkit. Watson uses commercial
toolkits to provide various look-and-feel standards such as OSF/Motif and
OPEN LOOK, along with public domain products such as Athena Widgets.
The application programmer is presented with a consistent programming
interface which supports the major lock-and-feel flavors.

Basically, Watson is a standard set of user interface objects which, when
combined in some logical, coherent manner, provides a graphical user interface
10 the end user. In general, Watson objects may be combined in any number of
ways 1o create a unique, tailored interface for any application. This paper looks
at the development of bdb, the Cray Computer Corporation enhanced
debugger, with specific emphasis on the user interface.

Developing with Watson

The first, and most important step, in developing bdb with Watson was to
completely separate the GUI from the debugger. This separation allowed easy
testing of individual components, and will allow for easy distribution of the
debugger across different platforms and architectures.

In addition to easy GUI development, bdb (through Watson) supports three
different look-and-feel flavors (OSF/Motif, OPEN LOOK, and Athena
Widgets) without change 1o the bab user interface code. This advantage allows
the debugger developer to concentrate on developing a consistent user
interface without regard to the low-level details of various toolkits.

Cray Computer Corporalion 2
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Figure 1
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bdb Development Steps

The debugger starts ¢::* _s an ungainly collection of ideas
combined into one monolithuc application. In this example,
ABCD + GUI ABCD represents functionality of the debugger.

A functional decomposition of the capabilities of the
debugger 1akes place without taking inio account the GUI.
The funciions are separated into individual components
and a programmalic interface is developeA.

Tel A Tcl interface is added 10 the debugger which allows

convenieni testing and evaluation of the capabilities of the
debugger. Al this step, after the application is debugged, a
compleie command line interface is available.

Tel GUI prototyping staris by including
Waison in the application. Once
proloryping is complete, the resulting
debugger is ready for public consumption.

A B C D Watson

Separate the Debugger from the User Interface

The first step involved in developing the user interface is to completely
separate the user interface from the actual debugger. The developer
concentrates on the capabilities of the debugger and designs the application as
a set of components that, when combined together, provides all the capabilities
required of the debugger. In several ways, this first step is similar to a
functional decomposition of the requirements for the application.

During development, bdb used a functional decomposition to build the core
capabilities of the debugger. This core capability was contained in a library that
forms the basis of all debugger products at Cray Computer. The library has
programmatic interfaces which allow complete access to the debugging
environment such axs:

Cray Computer Corporation
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* opening and closing a running process
e starting new processes under the environment
e sctting and deleting breakpoints

Bulid the Tel Interface to the Debugger

After developing the actual programmatic interface to the debugger, the next
step is to build the application binding to Tcl. Although this step is not
required, the prototyping and testing advantages of Tcl make these bindings
very productive. The bindings are simply C routines which export the
individual components of the application to the Tcl environment.

At this point, Tcl becomes an excellent tool for testing the various components
of the debugger. By developing special internal interfaces to Tcl, the developer
has a unigue capability to test and debug the debugger or application. Tcl
provides an interactive interface which allows complete control over
parameters used during the debugging process.

Prototype and Bulld the Graphical User Interface

At this point, the debugger developer can begin to use the capabilities of
Watson to prototype a GUI to complem2nt the line mode interface provided by
Tcl. The interactive nature of Tcl allows for fast turnaround times between
changes in the user interface, allowing the developer to incrementally build the
interface one component at a time and test the individual components at each
step of the process.

Watson and bdb

Several special capabilities were added to Watson to support the unique
requirements of the bdb debugger. The most notable addition was a code
display class which displays program source code with an optional status bar
and icon panel. The icons are currently used to indicate breakpoints and the
current program line. A status bar at the top of the display shows the current
program name along with the current line number. An example of the code
display class may be found in Figure 2.

The code display class can display up to cight columns of icons in the icon
panel. The icons may be defined by the application programmer or by the user,
and are resized by Watson based on the font selected by the user.

The code display class is not limited 10 use in debuggers: it was designed to be
flexible and has several other uses in other application environments.

Cray Computer Corporation 4
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Figure 2 Sample Source Code Display (OSF/Motlif)

Status Bar

o.fife=itie
8.Mie = 1le;
a.notty = nflag; Source Code

1f (key) { . i
: a.onds = OM_text_get(key): [~
‘W . OM_text_destroy_key(key, 0):

} olse §

-] : s.onds = 0:

icon Parel

The displays for the OPEN LOOK and Athena Widgets versions are basically
the same as the OSF/Motif version shown in Figure 2.

Future versions of the source code display class will allow the user to add the
display of individual line numbers in the lcon Panel to the left of the source
code. Several users have indicated that, although this option will require more
screen real estate, the benefit of having the line numbers visible will enhance
readability. This feature is being developed as an option to the source code
display and individual users may configure the class to toggle this capability on
or off at any time.

Other enhancements may include making the icon panel sensitive to user

mouse clicks. allowing the user to set or clear a breakpoint by selecting the
breakpoint icon on a particular line.

bdb User Interface

The cade display class is just one unigue part of the complete bab GiUI bdb
has been separated into three different windows,

bdb Main Display

The main display (shown in Figure 3)1s the tirst window to greet users when
they invoke the bab command This main window contams a list of the current

Cray Computer Corporetion 5
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programs being debugged by bdb, a quick access button area, a command entry
and command history area, and a joint bdb and program output area.

Figure 3 bdb Main Display (OSF/Moti)

Cray Computsr Corporation (c) 1991

Fie Ppe Pot
e
| List of Active Programs
Quick Access Buttons
P T I T T P T T LT PR TSIV RITL LIS IO
| cont | mext| Swp| Stpi| whers| up | Down| Step| Run |
Command History List
bdb command: r— Command Entry
-~
bdb results
Y
bdb Output
/
IN I~
bdb Code Display

bdb creates one code display window for every process that is being debugped.
An example of the separate code display is shown in Figure 4. The cde
display consists of a set of quick access buttons which acts only upon the
program displayed in the code window, a list of individual processes connected
to the program, and the now familiar code display object which displays all
source code for the program

Cray Compulter Corporation 6
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Users may select which process is active by selecting one of the entries in the
current process list. The list also contains the process id, the current state, and
an indication of which process is currently being displayed in the code
window.

Figure 4 bdb Code Display (OSF/Motif)

/CUHQnt Process List

§ Process List
23937  Current_Process

Quick Access Buttons |

#inC’ «stdio.h» ' ;

n¢i- - <«Ctype.h> ; \
n:nc}uge (str}ng.h) N f
winclude «sys/types.h>
#include <sys/time.h> Source Code Display
Rinclude <fentl. h»
winclude malloc.h.
ftinclude <tools/libom/omt¢l.h> a
N gl ) 7 '

bdb Auxlilary Displays

The third type of bdb display is a collection of auxiliary windows which
supports the main and code displays. Currently, bdb has a complete on-line
help facility that displays man page formatied documentation in a scrollablc
text window. Future enhancements to the Watson standard will allow tull
hypertext-like help capabilities to be built into every Watson based application.

In addition to the help display, bdb contains a unique Source Code Navigator
display that allows the programmer to browse through all files associated with
the program being debugged. The Navigator (shown in Figure §) is simply two
lists, the left containing the current source files from the program, and the right
contiaining the functions found in onc of the selected source files.

Cray Compuler Corporelion 7
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Figure 5 bdb Source Code Navigator Display (OSF/Motlf)

3/mush/src/tools/driver/main.c it [Create 54
-3/mush/src/tools/driver/version.c : Get
3/mush/src/tools/1ibwatson/convert. ¢! Set
3/mush/src/tools/1ibwatson/create.c Destroy
3/mush/src/tools/libwatson/version, ¢ Manage
‘3/mush/src/tools/11bwol /app.c I [ lunmanage
-3/mush/src/tools/1ibwol /button. ¢ i
‘3/mush/src/toals/1ibwol/cara.c
‘3/mush/src/tools/1ibwol/units. ¢
‘3/mush/src/tools/11bwol /menu. c
3/mush/src/tools/1ibwol/10g0.c
‘3/mush/src/tools/1ibwol/11st. ¢ i [
‘3/mush/src/tonls/1ibwol/1abel. ¢ : |
................................................................................... 1 i

f FJ ..... l.‘.". ........................................ "7
Select an entry in the Ries list '~ display all funclons in the fliie then select

an enlry in the Functions st W inove the source code display.
e T g e e e e . —

When a source file is selected in the left list, the right list is changed to show all
of the functions in that source file. When a function is selected in the right list,
the current code display window is changed to display the source code of that
function. The Navigator significantly decreases the amount of time a
programmer takes to find a function in a panticular file.

Watson and Other Applications

Although Watson began as the user interface product for our debugger, it has
grown to encompass the GUI needs of almost all applications developed by
Cray Computer. Watson supports the needs of several classe . of applications
from a Visual System Monitor that monitors various parameters and values of
running processes, to a Visual System Administrator that provides an easy-to-
use, graphical interface to all types of system administration tasks.

The benetit of using one product for all GUI needs is obvious to the user, all
applications developed with Watson will have a consistent look-and-feel that
reduces learning time, increases productivity, and allows easy end user
customization of the GUI

Cruy Computer Corporstion 8
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Grapaical User Interface Design Goals

* We wanted to rapidly build displays that are:
- Concise
~ Unambiguous

Watson: A Graphical User Interface = V' ual

Environment for Debugger Development - Hierarchical o
* e We also wanted to design displays that are:

- Easy to learn using built-in help facilities

. - Easy to use
Randy Murrish — Easy to customize
~ Consistent across applications
. - Easy to develop and maintain by the developer
Cray Computer Corporation - Easy to port to new platforms
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Watson Overview

* Wasor' is 2 Graphical User Interface (GUD environment for
aprucanor deveiopmernt.

o (regt-orerted rarere of Watson provides simple, standard
=uildir Biocks for the developer
- srmilar programming paradigm as found in the X Window's

Tootkit

» T-arsparert supprrt for disiributed applications without
chargrg the appizcation

» Toni Command Language interface is avatlable through the
™ vt Marager support library

- Tcl s an interpretive command language that may be
:rhedded m appit@tions

- supports rap:d prototyping of new vser interface techniques
- casv for the user ' custom:ze the user interface to meet their
urigue reeds
- rew capabiites mav be added by the end user
» Bu:lt using standard products and interfaces
- hased or X1IR4/R>
- OSF/Mont Toolk:t v1.1
- OPEN LOOK’ Intrinsics Toolkit v4i
- Arhema Widget

T ater amd bdb are raderaris ¥ Cray Computer Corporaton
I RE Mo = a raiemark 2 the Open Software Foundaton. Inc

TEN TOWOK = a repstered trademark of USL

CRAY COMPUTER CORPORATION
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Bullding a Debugger with Watson

* bdb progressed through several stages during the development
phase:
- bdb core capabilities identified by a functional
decomposition of the requirements
- development of the capabilities
- Tcl interface added

- GUIl added
n:bi------—d’*_.f
ABCD . GUI '. APCD o '4‘...-"
Ap—dh—dhﬂ-dﬁ
GUI. The fonctivns e soparated inte individ
ands ic smierface is

ey (ot

] Afd-ﬁv--ﬁ--t‘mﬂ:ld-l
srsting and rwah o
i

of she capalnlisic
BIE] hﬁ*ﬂﬁl-’.*rﬁ#
p d king imsevfiace is

] GUT presstyping stavws by inciuding
Saten in the sppliostion. Ouce

| o
protetyping is congplete, the reyuiting
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Watson ond bdb

* Specal capahilities were added to Watson to support the
unugue reguiremrents of hdb
e Source ande dispiav dass 1OSF/ Motil version):

o e e e, _— _;j
Swmrus Ber H = s == l
- - - l”
[ ] .r- - T : o .-—-:
e e Source Code
[ )
P s - W "m" @ bor -
» -, W g o men bes T :
[+ ’ 'L"-: - ’
lcon Penel ._J P — —

s Funire emharcemer:s to the source code display indude:
= 2low the user o toggle the display of line rumbers in the
o paned

make the 1con panei sersitive to user mouse dicks allowing
the u<er o set or ciear a breakpoint by selecting a breakpoint

wen
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Seftware Tools
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bdb User Interface

» Comprised of three different types of displays
- Main Display
A single window which controls all programs currently
being debugged by this instance of bdb.
- Code Display

One code display Is created for every program currently
being debugged by bdb. This contains the source code
display class and a list of all current processes associated
with the program.

- Aunxiliary Displays
A complete, menu-oriented help display that is available
at any time.

The Source Navigator Display which allows the user to
quickly navigate through all available source code in a

program.

CRAY COMPUTER CORPORATION
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bdb Main Dispiay (OPEN LOOK) bdb Main Dispiay (OSF/Motif)
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bdb Main Dispiay (Athena) bdb Zode Display (OSF/Motif)
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bdb Source Code Navigator (OSF/Motif)
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bdb Source Code Navigator (OSF/Motif)
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Debugging Optimized Code
Without Surprises
(Extended Abstract)

Max Copperman
Charles E. McDowell

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

Optimizing compilers produce code that impedes source-level debugging. A source-level debug-
ger of optimized programs should be able to warn the user when optimization has caused the value
of a variable at a breakpoint to be misleading. We describe the information an optimising compiler
must make available Lo & debugger, and how the debugger can use the information, to determine
when optimization has caused the value of a variable to differ from the value that would be predicted
by a close reading of the source code.

keywords: debugging, compilers, optimization



1 Introduction

A major cost in the construction of production-quality software is debugging. In the past decade, interac-
tive source-level debuggers have become commonly available, and such tools increase the ease of debugging,
providing a tremendous increase in the speed of locating bugs. Most of the production quality interactive
source-level debuggers function as expected only on unoptimized code. When such a debugger ir used to
debug optimised code, it may mislead the user, causing the time spent debugging to be increased. Since
optimization is desirable (sornetimes necessary) for production software, interactive source-level debuggers
that can be used on optimized code without misleading the user are needed.

A common misconception is that a program’s behavior will not change due to optimization unless the
optimiuer is incorrect. This is the case if the program contains no errors and no dependencies on evaluation
order. However, optimization can uncover program errors thal are benign in the unoptimised case. Examples
are given in Section 1.1. It is not surprising, therefore, that sometimes when a program is recompiled without
optimization in order to use a source-level debugger, the bug goes away.

P svious work in this area has tended to target specific optimizations, largely local optimizations (within
a basic block). This paper descrit- ; an approach that applies equally to local and global optimizations,
and the debugger algorithms are independent of Lhie optimizations that have been performed. The compiler
modifications to provide the input tc the debugger algorithms are not identical for all optimizations.

1.1 Why Debug Optimized Code?

Why debug optimized code? Why not simply turn off optimizations when debugging? It would then be
unnecessary to solve problems related to source-level debugging of optimized code.

Disabling Optinisation May Be Undecsirable

In & producticn sofiware engineering environment, it may be expensive to disable optimization. It may
require two compilations of each compilation unit and storage of two copies of each compiled object. Fur-
thermore, it may be impossible to avoid optimization. The compiler of choice may not allow optimization
to be disabled. There is at least one highly optimizing compiier [Pic90] that, when compiling with opti-
mizations turned off, still performs live/dead analysis, constant propagation, copy propagation, and global
register allocation, any of which can confuse a source-level debugger. In principle it may be possible to get a
different compiler, but as a practical matter, it may be impossible or undesirable. In addition, optimization
of functions to which the user does not have source code (such as library functions) can cause debuggers to
give misleading information. For example, if a library function's stack frame has been optimized away, the
debugger may show an inaccurate stack trace.

Changes in Programn Behavior

The most compelling reason for this research is that a program compiled with optimizations enabled may
behave differently froin the same program compiled with optimizations disabled. (Optimization can change
the prograin behavior for one of the following reasons.

o Loose semiantics: A language may contain constructs whose semantica allow multiple correct transla-
tious with distinet behaviors. Most common general purpose programming languages do contain such
constructs. The moat commonly known area of “loose seinantics™ in evaluation order, but there are
others. A correet optimized translation of a program containing code with loose semantics may have
different hehavior from a correct unoptimized translation of that program.



int 1;
char a, b[10], ¢c;

void everwrite_c() {

a = getchar();

c=a;

for (iw0; i<wi10; i++) {
bli] = ’\o’;
}

cwa;

it (c == '\0*) {

program misbehaves

}
}

Figure 1.1: Ontimization Changes Program Behavior: Example 2

e Buggy programs: A correct optimized translation of a program containing a bug may have different
behavior froin s correct. unoptimized translation of that program. This is an important and commonly
overlooked case, two examples of wiiich are given befow. We are concerned mainly with programs that
have bugs — otherwise they would not undergo debugging. This can cause (rustration: the programmer
recompiles without optimization in order to use a source-level debugger, and the bug “goes away™ (Lhe
behavior that is evidence of the bug changes).

e Buggy compiler: An optimized translation of a program may have different behavior from an unop-
timized translation of that program if the translator contains errors. If 8 buggy compiler causes a
particular (part of a) program to act differently optimized from unoptinuzed, getting a corrected com-
piler means getting a compiler whose bugs are not exhibited by translating that (part of that) program.
It is often easier for the programmer (o find the code that causes the compiler bug to show up and
replace it with semantically equivalent code on which the compiler functions correctly. The point is
«uat the programmer still must debug the (incorrectly) optimized code !

It 18 common for even cxperienced noftware engineers to be surprised at the fact that a program can
behave one way when optimized and a different way when unoptimized when 1l Aas been compiled with a
correct compiler. Here are two simple examples of programs with bugs and how optimisation can affect
them

In vhe code in figure 1.1, the bug is benign when the program is unoptimized and malignant when
unnecessary stores are eliminated. The bug is to wrnite past the end of an array, oveewriting the character
¢ In the absence of optimization c is subsequently overwritten with the correct value and the oug goes
unnoticed. In t! presence of uptimization, the bug affects the behavior of the program. the optimizer
elimimnates thesr | aamgnment into ¢, because it can determine that in a cotrect program ¢ would already
contan the to-be  1gned value

Note that tlus wituation can occur with statementa that are arbitrarily far apart in the source code, no
long aa the ~puimizer can deteermine that a has not been modified between the first and second assignment
into ¢

"Even if the chuice w o get a fises] compuler, the programmer ty po-ally haa to debug the uptimiasd code enough ta repor
the problem to the compiler vendor



int {;
char b[10], ¢;

void walk_on_c() {
¢ = getchar();
for (i=0; i¢=10; i++) {
bli] = \0’;
}
it (c == 2\0’) {

program misbehaves

}
}

Figure 1.2: Optimization Changes Program Behavior: Example 1

In the code in figure 1.2, the bug shows up when the program is not optimized. It has no visible effect
when data fetches are optimized by aligning data structures on 4 byte boundaries.?

if each data object is aligned to a four byte boundary, there will be two bytes of padding between the
end of array b and character c, and the bug (writing one byte past the end of b) has no effect on program
behavior. If data objects are not aligned, there will be no padding between b and ¢; ¢ will be overwritten.

We have seen that optimization can change the behavior of a program. It is therefore necessary, upon
occasion, to either debug optimized code or never optimize the code. It is not always possible to debug
unoptimised code and kave it run correctly when recompiled with optimizations enabled, even when the
compiler is correct.

1.2 The Data Value Problem

A source-level debugger has the capability of setting a breakpoint in a program at the executable code
location corresponding to a source statement. When a breakpoint at sotiie point P is reached, presumably
the user wishes Lo examine the state of the program, often by querying the value of a variable V. Commonly
available debuggers, upon receiving such & query, will diaplay the value in 1''s location. Unfortunately, this
value may be misleading due to optimization The uner will be misled if the value in different from the
value that would be predicted by looking at the source code (and knowing the relevant context, such as
within which iteration of a loop execution is suspended). In unoptimized code, at each point the value in
V's location matches the value that would he predicted by the source code. so the erpected value of V' at P’
can be defined as the value that V' would have at the corresponding point in an unoptimised version of the
program. To provide erpected behamor, a debugger muat provide the expected value of V' at . Sometimes
it may not be practical to provide the expected value of a variable. In this cane the debugger can exhilut
truthful behavior if it provides the current value in V' location, but in addition reporta that the value of V'
might be different from V's expected value, and why

Gieneral approaches to the problem have been

o o remtrict the optimizations performed by the compiler 1o those that do not provoke the problem
([WSTH]. [2300]),

-——— e ——— - s o ————

INute that program nushiehavior, which is the eaternal evidence of the bug, vould veeur when the program is st optiized
and go away when the program o optimiresd by changing the senae of the conditional  that . by sdding another bug What
e unprartant 18 that the behavior changes depending on apunuzation



e to recompile, without optimization, during an interactive debugging session, the region of code that is
to be debugged ([FM80], [2390]), and

e to have the compiler provide information about the optimizations that it has performed and to have
the debugger use that information to provide appropriate behavior ([WS78], [H82], [CMR88], [C90],
[2390)).

The larger problem we are concerned with is lowering the cost of debugging production quality software.
Much if not most production quality software produced in this country is h2avily optimised, and the first
approach would result in compilers that would not get used; their use would degrade the quality of the
software. The second approach requires a sofiware engineering environment that provides incremental
compilation. Such environments are not in general use and even should they become commonplace, the
approach is unacceptable because optimization may change the behavior of the program (cf. section 1.1).
We take the third approach.

If the value in a variable's storage location is suitable to be displayed to the user it is current. The
remainder of this paper outlines how to determine whether a variable is current at » breakpoint. The
fundamental idea behind our solution to the currentness determination problem is the following: if the
definitions of a variable V that “actually” reach a point F are not the ones that “ought™ to reach P, V is
not current at P. The definitions of V that actually reach P are those that reach P in the compiled version
of the prograin. The definitions of V that ought to reach P are those that reach P in a strictly unoptimized
version of the program.? The set of definitions of V' that reach at any point in = program (optimized or
unoptimized) can be computed using existing algorithms [AU77). If the set of definitions of V that reach P
differs in the optimized and unoptimized version of the program, then V is not current. The debugger can
use the sets of definitions Lo describe, in source-level terms, why V is not rurrent. Unfortunately, if the two
s 3 of definitions are equal it is still possible that V” is not current. This is discussed further in Section 3.2.

In order to determine a variable's currentness:

1. The compiler must generate a set of debug records relating statements to code addresses; these debug
records are ordered in two flow graphs, one representing the prograrm before optimization and the other
representing the program after optimization,

2. The flow graphs are used to compute reaching definitions, which are in turn used to create reaching
sets (nets of definitions that reach a breakpaoint location).

3. The reaching sets are compared to compute the currentness of variables.

Section 2 describes the datla structures that must be produced by the compiler. Section 3 describes how
these data structures are used to provide expected behavior most of the time and truthful beliavior the rest
of the time * Section 4 discux.en the accuracy of the results.

A0ne compilation of the program is sulhcient o proside the infurmation with which (o cotypute hoth the definationa that
vught to reach #' and thoes that actually reah 1

10 s trivial tu provide (uaelesa) truthiul behavior Sinply always give a warning that the code has heen optinsed This
ol course una eptabile



2 Compiler Support

2.1 Debug Records

The compiler provides the debugger with information about every declaration and statement in the
program. We call the collection of informstion about a statement (declaration) a debug record. A distinct
debug rucord is produced for each modification to each program variable, so more than one debug record is
produced for a statement that has side effects. For example, the following code causes 8 debug records to
be produced:

int a, b, ¢; (Produces three declaration debug records.)

a=0; (Produces one statement debug record.)

b = c+s; {Froduces two statement debug records: one for the
assignment into b, and one for the side eflect on ¢.)

A debug record R for a statement S has the following fields:

Var(R) — a variable name,

Sref(R) —- » source reference,
Cref(R) — a code reference, and
Moved(R) — a boolean (one bit).

The Var field identifies the variable updated by S. We say R defines V if Var(R) = V, that is, if V in
the variable updated by S. If S does not update a variable, the Var field is null. The Sref field contains the
source reference for S (file name and line number, perhaps which statement on the line, if the debugger is to
handle lines with multiple statements). The Cref field contains the addrens of the instruction that represents
S. If no instruction is generated for S, the Cref ficld is null, unless the debug record describes a declaration,
in which case the Cref field contains the address at which storage for the declared variable is allocated. The
Moved field encodes whether the code for S has been moved out of the basic block in which it originated.

2.2 Representative Instructions

The Cref for a statement is the address of the code for the statement. Beeause the code for a statement
may be moved by optimization and may be discontiguoun, one instruction is chosen an the representative of
the statement The breakpoint location for a statemient in the address of its represcntats = instruction (ita
Cref) ® Given that the currentness of a variable 1’ at a statemient S in computed relative to the breakpoint
location for S, the choice of & representative instruction for S han an impact on the quality of souree level
debugging provided * In unoptimized code, it s adequate to use the first instruction generated from S ax
its breakpoint location. However, this ean be a poor choire in optimized caode  For each conateuet anoa
progeamming language, the breakpont location should be chosen appropriately  For assigninent (and suie
effecta that modify variables), the tepresentative intruction must be the store into the vanable for our
method to be correct See [C00), pages 60 62 [or further detailn

‘A single inatruction regpiresenta a statement because (mnong other things) it would be inappropriate to Lireak al svery
Instruction generated from @ watement .

*Clusming the siatenent as the granularity of deling 1ocotds meana & vanable's surientness «an be determined at statement
boundaries, but it a2 artbitrary machine inatrucone 1l a bieakpuint is reached, the curteniness of a varnable V' can he
accurately determinad . but if the program trapa (halts at a non irpresentative inatr Gon, thua at & noen atatement bhoundary)
arTUIAy 8 ROt guarantesd



2.3 Flow Graphs

The compiler also provides the debugger with two representations of the control flow of the program.

A flow graph rapresenting the basic block structure bafore optimisation is called the source graph. Each
node in the source graph corresponds to a basic block and contains a sequence of (pointers to) debug records’,
one for each statement within the block in the order in which the statements appear in the source code.

A flow graph representing the basic block structure after optimization is called the object graph. Each
node in the object graph corresponds to a basic block and contains a sequence of (pointers to) debug reco.ds
that corresponds to the sequence of statements that have ended up in that block.

2.4 Reaching Definitions

The flow graphs are used to compute reaching definitions. We are interested in determining, for each
statement that defines a variable V and reaches a breakpoint B in the unoptimized code, whether its
corresponding object code reaches B. Bolh statement and breakpoint locations are represented with debug
records, so the desired determination can be made by computing which debug records representing definitions
of V reach the debug record representing the breakpoint B.

These reaching definitions are computed across, as well as within, basic blocks, so those records that
must reach B (sucn as definitions occurring prior to B in the same block) can be distinguished from records
that may reach B (definitions occurring on some but not all paths to B). For a breakpoint B, the set of
source definitions that may reach B is computed based on the Sref field of the debug records in the source
graph. and is called the set of definitions of V' that reach B. The set of object code definitions that may
reach B ia computed based on the Cref field of the debug records in the object graph, and is called the set
of stores into V' that reach B.

We assume a null definition and a null store at the beginuning of the program or subroutine, that is, at
the start node of a connected compor ent of a flow graph. This ensures that if a single definition or store for
a variable reaches a breakpoint, it reaches along all paths to the breakpoint. This also ensures that at least
one definition or store for each variable reaches the breakpoint.

In the absence of pointers and array references, reaching definitions could be computed using a standard
iterative algorithm [AUT7]. This would produce at most one definition of a given variable at the exit of
block. Using such an algotithm, an assignment through a pointer or areay reference would kill all pending
definitons. "This would destroy inforn stion required by the currentness deteemnination algorith,

In this paper, reaching definitions are used to determine if a variable V' has de finitely received ita value
from one particular definition or may have received 'ta value from ene of several definitions. In the preacnce
of pointers and areay references, if & definition 1) through a pointer or areay reference (call it o) reaches
H. « 1’ may be an alias for V7, thus 1) may be a reaching definition of V'

If o7 in an aliaa for V', V' teceiven its value from the computation associated with 12, If 1 in not an
aliaa for 1 in some particular execution, V' receives ita value from whatever definition 17 would have reached
if 1) were not present  Therefore, both 1) and 17 must be conmdered to reach B This i treated more
formally in [C80) pp 110 112 In the presence of pomters and array references, reaching definitions must be
computed umng & modified algorithm i which an saigument through & poiter or areay reference does not
kil previous defimtions, thus more than one defimtion of & given variable may reach any point, ancluding
the exit of a block

"Ilvere in & single set of debug recorda that i shared Letwesn the two low grapha, hawever, for all itents and purposes the
nodea are treated as il they contam debug rec onda as appoard o pomters o tecntda



2.5 Equivalent Definitions

An optimizing compiier may be able to determine that two definitions are equivalent and generate a single
store, or it may generate multiple stores from a single definition. To accomodate this ability, we redefine the
terms definition and store.

Definition 1: A definition of V is any member of an equivalence class of modifications of V that occur in an
unoptimized version of a program and can be determined by a compiler to represent the same computation.

Definition 2: A store into V is any member of an eguivalence class of modifications of V that occur in an
optimized version of & program and that have been generated from one definition.

We extend debug records with a fleld Equiv(R) for the compiler to record the equivalence claas that the
definitions and stores fall into.® The reaching-definitions computation then computes the set of equivalence
classes (definitions) that reaches a breakpoint in the source graph and the set of equivalence classes (stores)
that reaches a breakpoint in the object graph.

U the complles haa deternined that s set uf definitions 1epresenta the same compitation, all of the stores genstated fom
thuse delinitions 1epresent the same computation, thae the delug vecond, which teprapenta hoth a definition and a sture, nesda
onby & single hield to represent the sguivalens e laae that the detiitn (alla inte and the sgquivalen e o lasn that the atore (alls
o



3 Currentness Determination

This section describes how to determine which state of currentness a variable is in at a breakpoint - the
problem of curreniness determination.

The debugger has available to it the flow graphs and debug records described in section 2. When a
breakpoint B in a program is reached, and the user asks for the value of a variable V, two sets of reaching
definitions are needed:

® Lhe set of stores into V that reach B in the object graph, that is, the modifications to V that actually
reach the point at which execution is suspended, and

o the set of definitions of V that reach the point in the source graph epecified by the user (in source
terms) that corresponds to B in the object graph, that is, the definitions of V that the user expects to
have reached the point at which the user believes execution is suspended.

A number of variations on how to compute these sets of definitions, trading storage space and one-time
computation costs for apeed at the point of the (interactive) query are possible, the most straightforward
being that they are computed by the debugger at the point of the query about V.

To determine a variable’s currentness we compare these sets. There can be one or many definitions of
a variable that reach a breakpoint and there can be one or many stores into that variable that reach that
breakpoint, inducing the matrix of four cases shown in Table 3.1. In the most complex case, in which many
definitions of and many stores into a variable reach a breakpoint, comparison of Lhe reaching sets alone
is not sufficient to determine a variable's currentness. The additional work that is required to make the
determination is described in sections 3.2 and 3.3. Table 3.1 summarizes this additional work.

The table yields one of five possible responses:

Current The value of the variable will be the expected value.

Endangored The value of the variable will be Lthe expected value for some execution paths and will not be
thie expected value for some execution paths.

Noncurreut The value of the variable will not be the expected value (or at least not derived from the
expected computation).

Not Curraut The variable is either endangered or noncurrent. Not current is similar to endangered but
indicates that there may in fact be no execution paths where the variable gets its value from the
expected computation.*

Graph Traversal Reguiroed Comparison of the reaching setn, and an inexpensive further test, have failed
to determine the currentness of the variable. It in quite likely that the variable in at least endangered,
but a precise answer (one of the above four) requires the (more expensive) graph traversals describied
in section 3.3.

Except for the Many-Many eam:, thin yields a sinmple algorithm for determining the currer'ness of a
variable.

3.1 When a Varinble is Not Current

When the debugger in asked to display a variable, it determines whether the variable in current  If
the varinble i current, the debugger dinplayn ita value without comment  If the variable wn not curpent,
in additiion to displaymmg itn value, the debugger usen the setn of storen and definitions that reach the
hrenkpoint to desetibe the effects of optunization The general Havor of what the debugger can do in given
by the fullowing two sample mesaagen that nught accompany the value of & vanable V' Assumie a breakpomt
in reached at line 339

*Laodangerad meana there 1o at least ane execution path along which the variable haa its expes ted value  Noncureent mieann
there la no path alung which the vasiable haa ita enpected value  Not cutrent eana there may be a patl along which the
variabile haa ita sxpos toed valure



One definition, d, reaches Many definitions reach

One store, s, reaches || Was s generated from d7 Was s generated from one
of the definitions that reach?
Yes: current Yes: endangered
No: noncurreut No: noncurrent
Many stores reach Was one of the stores generated from d; | Were any of the stores generated
from any of the definitions?
Yes: endangered No: noncurrent
No: noncurrent Yes: Were the storea exa-tly those

generated from the definitions, and

did every definition generate a store?

No: not current

Yes: Was there any relevant code motion?
No: current
Yes: graph traversal required

Table 3.1: The Various Cases

“} should have been set at line 336. Howeve:, optimization has moved the assighment to |/ at
Jine 342 to near line 327. V' was actually set a* one of lines 336 or 327."

“V" should have been set at line 336. However, opltimization has moved that assignment to near
line 348. V was actually sel at one of lines 312, 327, or 323."

The description of the effects of optimization will vary in specificity as the effects of optimization vary
in complexity. The descriptions in the Many-Many case will be less specific than the deseriptions in the
One-One cane '?

3.2 Multiple Stores and Multiple Definitions

Consider the case in which there are multiple defimtions of V' and stores into V' that reach 4, and the
stores Lhat reach are exactly those generated from the definitions that reach. V' immay be current, no current,
ot endangered. Figure 3.1 shows all three posaibilitien. it is unaceeptable to be overly conservative and claim
that V' is not currem in this cane, hecaune the stores that ceach are always exactly those generated from
the definitionn that reach, in unoptimized code. A debugger using such an algorithim on unoptimized code
would claitm that any variabile that has deflnitions o more than one path to B is endangered, when in fact
no variablen are endangered.

One way (o deterinine V's currentness in to test whether for each path p to B the store that reaches
B along p wan generated from the definition that reaches 4 along p. Depending on the characteninties of
progeama, it may be preferable to use an approximation to V'a currentness at /1 that sacrificrn accuracy
to avord potentially exponmive geaph teaversals. Such an approximation should be conservative it may
oceasionally incorreetly tell you Vs not current, but it should never tell you that Vs current when Voo
fact in not

There in such an approximation, which, if the compiler saven the appropriate information, in mmph: to
compute The approximation i If wa relevant code motion has croased block boundaries, V' oan current ai

WSuh mesanges can be produced because line number infonmation i stered i the debug recoreds aned poat aptinigatinm
stateinent ordeting information is preaent in the albyect gragh



Unoptimized Optimized: a is current Optimized: a is endangered

a=x a=x a=x
a=
a=y a=y
r 4 l L I J !
bkpt bkpt bkpt
Unoptimized Optimized: a is noncurrent
A=W R=E W

bkt

bkt

Figure 3.1: Storew that Reach hkpt are Exactly Those Generated from Definitions that Reach bhpt



B. If such motion is found, V may be conservatively claimed 10 be not current at B. Informally, relevant
code motion is any motion acrcas block boundaries of stores generated from definitions that reach B or
movement of B across a block boundary (this includ:s code elimination as a special case). It is not known
how good this approximation is. However, because uo code motion occurs in the absence of optimization, this
appraximation works perfectly on unoptimized code. Furthermore, to get to the inaccurate (conservative)
case there must be

e optimization involving relevant code motion,

e more than one definition of V reaching the breakpoint,

e more than one store into V reaching the bFreakpoint,

e and the stores that reach must be precisely the stores generated from the definitions that reach.

3.3 When All Else Fails

Let us examine the case in which comparing resching sets does not give us an answer and relevant code
motion haa occurred. We are now assuming the conditions enumerated above.

In general, V is current at B if every path to B that goes through a definition of V' also goes through
the store into V generated from that definition, and neither the definition nar store are subsequently killed.
This would be expensive to determine in general. It is somewhat cheaper in this special case (although still
considerably more expensive than comparing reaching sets) because we know that the definitions and stores
that reach B match exactly, and stores Lthat have not iroved ean not endanger V.

Given the assumptionas necessary to reach “graph traversal required” in Table 3.1, V is current at B if
for all definition/store pairs d,s such that & was generat=d from d the following hold:

1. If s has been moved DOWN out of the block containing d then

{a) for all paths {from d Lo B along which d reaches B, s reaches B and
(b) there is no path to s that did not go througt d.

2. If s has been moved UP out of the block conlaining d then

(a) for all paths from s to B along which # reaches B, d reaches B and

(b) there 18 no path to d that did not go through ».

Notice that case 2 above in identical to case 1 with the roles of d and a reversed,

Figure 3.2 attempta Lo capture the restrictions pictorially on an example in which the store has moved
down. Not captured in the figure is that if one of d or s is killed along any path, both must be,

Whether these restrictions hold can be computed by a pair of recursive graph traversal algorithms
bolstered by an additional reaching definitions conputation. Algorithm ‘Through-top (given in Figure 3.3)
can be used to teat whether all paths to one block pass through another (conditions 1h and 2b sbove).
Algorithin Through-middle (given in Figure 3.4) can be used to test whether all patha from one block o
another pass through a particular middle block (conditions 1a and 2a above). Both algorithme rely on being
able to determine if one block is an ancestor of another, so the teansitivity of the flow graphs, ignoring back
edgm, must he computed.

Through-middle may uncover a block A mich that there in a nonempty set of patha from the block ‘Top
contaimng 8 steve!! to the block Bottom containing the breakpoint that pase through A, but do not pass
through the block Middle containing the definition'!

"Whhin asaviines the store haa moved up I the store haa moved down, replace “store” with “detinivieon® and “definition” with
“stoze”



d d'(# d)

bkpt

Figure 3.2: Paths if V is Current

Through-top(Top, Bottom)
for each predecessor S of Bottom
it S I= Top
if Top is not an ancestor of §
return False
else if Through-top(Top, S) = False
return False
return True

Figure 3.3: Graph Traversal Algorithin Through-top

Through-middle(Top, Middle, Bottom, DefOrStore)
for each successor S of Top
if S |= Niddle
it S is an ancestor of Bottom
if S is not an ancestor of Niddle
1f pot Top-killed(Top, Bottom, DefOxStore)
return False
else if Through-middle(S, Niddle, Bottom, DefOrStore) = False
roturn False
return True

Figure 3.4: Graph ‘Traversal Algorithin ‘Through- Middle



bkpt

Figure 3.5: V is Current

If the store!! in Top reaches the breakpoint on any of these patha, V is endangered. If the store!! in Top
in killed on all such paths, V is not endangered by the motion of this particular store'!. Figure 3.5 is an
example of such a situatiou in which V is current. If Through-middle does find such a block A, Top-killed()
is called. Top-killed(Top,Bottom,DefOrStore) returns True if DefOrStore is killed on all paths from Top to
Bottom and Falsr otherwise. DefOrStore is a definition of V or a store into V in block Top. Top-killed can
be compuled using a standard reaching definitions algorithm on the graph containing Top, Bottom, and all
blocks on paths between the Lwo.

4 Summary

We have presented a solution to the problem of optimization causing a debugger to provide an unexpected
and potentially misirading value when asked to display a variable. The solution works for both local and
global optimizsations. The algorithms for the debugger are independent of which optimizations have been
perforined, however, the algorithma used Ly the compiler to generate the necessary flow graphs are not.

For most optimizations, under most situations, our results are precise (i.r., a variable claimed to be
current is current, a variable claimed tc be endangered is erdangered, etc.). Wlen the results are not
precise, they are conservative: a variable claimed to be endangered, noncurrent, or not current may in fart
be current. A variable Lthat is not current is never claimed Lo be current.

The situations in which the results may be conservative are:

e when the breakpoint han moved in auch a manner that the set of definitions that reach its new location
differs from Lthe set that reach its original location, and

e when a variable in current along all feasible paths but noncurrent along some infeasible path.!!

'V An infeasible path is one that cannot be taken in any execution.



{ Optimization || Algorithm Accuracy |
common subexpression elimination || Generally Precise’*

croas-jumping [[ Generally Precise
instruction scheduling Genera.llyjrecise
other code motion Generally Precise
partial redundancy elimination Generally Precise

loop fusion Generally Precise
loop unrollin Conservative
inlining (procedure integration) Conservative

loop reordering Generally Precise
induction-variable elimination Generally Precise

Table 4.1: Characlcristica of Representative Optimizations

For some optimizations, our results may be conservative in any situation. These optimizations are
those that duplicate code where the duplicates are not in the same equivalence class (one duplicate does not
represent the same computation as another, as in loop unrolling). Table 4.1 lists representative optimizations
and shows how precise our results are on them.

The method to precisely determine a variable's currentneas in the most difficult case, described in section
3.3, may be expensive. Section 3.2 describes an inexpensive conservative approximation to the precise result
in this case.

175¢¢ bullets in the conclusion for exceptions.
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The Symbolic Debugging of Code Transformed for Parallel Execution
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Abstract

A technique is presented that enables the debugging of transformed and parallelized
code from the point of view of the sequential code. The method frees the programmer
from the necessity of viewing the substantiall altered code produced by the pacallelizing
transformations!.

A critical problem that arises in the debugging of such code is that values requested by
the programmer at a breakpoint placed in the transformed code may be different when
reported than the values expected by the programmer. In other cases, the requested
variable may have changed in type or dimension. Such vanables and their values are
termed non-current. These discrepancies between the user’'s view and the runtime
representation are due to the action of the transformations on the code, where declaration
statements can be modified and executable statements can be added, deleted, moved or
replicated. The accurate tracking of non-current variables for the purpose ot reporting
cxpected values to the debugger is the subject of this work. A subset of this problem has
been studied previously in the corntext of code transformed for optimization.

The technique for debugging transformed code is realized in a three stage system,
where the code is first transformed by global renaming into single assignment code. The
code can then be transfornied and parallelized by any desired software package. A
drawback of the global renaming is that many new names are created, most of which may
not produce a useful benefit. Therefore a second stage analysis is applied to the program,
after parallelization has occurred but before compilation, where new names which have
not produced any benefit are reclaimed. The names not reclaimed have either been useful
in exposing additional parallelism, or are required b: the tracking function for the
debugger. The third stage is a runtime interface that retnieves and reports the values,

This design results in a solution that is largely architecturally independent, is
independent of transformations applied. correctly reports values in a high percentage of
cases, and cnhances the parallelizing process. The combined effects of the global
renaming and name reclanition stages are to free the code of undesirable data
dependencies exposing all available parallelism.  For this reason the technique is termed
Code Liberation.

A prototype tool designed for structured FORTRAN 77 codes has been implemented.
Rusul's showing the technique to be effective and efficient are presented

'P P Pineo and M L Soffa. “Debugging Parallelized Code Using Cade Liberation Techmguen”,
Sigplan Notices (Proceedings of the Workshop on Parallel ard Distubuted Debugyimg ), December 1991
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Abstract

Existing source-level debuggers are heavily dependent or. oth the source language of the program
being debugged and the aichitecture of *he machine on which the program runs. These dependencien
place a burden on a programmer who wants to extend the debugger to work on a different language or
machine. Such debuggers also typically ofler poor support for sophisticated featu.er such as del'ugging
code that has been radically tranaformed during compilation.

\We propase a new design for debuggers that uses a structvre analogous to that of modular compilers.
The debugger is separated into stages corresponding to the parser, optimizer, and code generator of a
compiler. The various stages of the debugger commuuicate using an intermediate language which can be
derived by augmenting the intermediate language of the compile; with primitives to support debugging.

We expect this design will promot= the ability to debug oplimized cadr, ease in porting the debugger
to different architectures, and reusability of each portion of a debugger. This design in intended to increase
thr cooperation between in plementers of compilers and debuggers, and to allow eflicient implementations
of sophirticated debugging operations, while supporting the debugging of optimized programns

1 Introduction

Souree-leve] debuggeres are an integral part of the process of writing and maimtaiming programs  They pernnt
the user to obseeve, control, and modify the dyname behavior of A machine lauguage program i terms
of more famihar sourer symbols and conntructe A delagger maps hetween the souree text of a program.
the machine code derived from the source text, and the portion of the urer’s commands that are expressed
with source construets  ‘This mapping s typically accomplished by having the debugger use a symbel table,
produced by the compiler. that describes how sour e level construets map to the machine ievel  References
tu the mourer are retained an the program passes through the vanous translation stuges of the compiler As
the compiler deteenmines the final teanslation, the machine code generator enit - these annotations for late
use by the debugger

Whele thie design has been reasonably suceesaful, it does have sigmficant dravbacks The reselting
debuggers depend heavaly on both the lnnguage being debugged and the architecture of the machine onwindh
the progeam s tun These dependencies complicate the procens of modifying the delugges o acconme lat

a different wneee language or taeget machine  Taldonng such debuggees to follos the translormatoms of

*1Thine wink wan sugpareed m part by the Natonal Soensce Doussdans o oides Cirante CORCRROSG L and ASE RATRS R and By
IRAL Corproration through ita 1eacarch contrasta with the Depattmen of Computer S e at Hoe Unineraty



an optimizing compiler reduces the pecrtability of the debugger. Finally, the traditional model does not
accommodate program changes during debugging. These limitations are discussed in more detail below.

In an attempt to improve portability, traditional debugger designs abrtract the machine dependent parts
of the debugging process and isolate them in a collection of modules. To build a debugger for a new
machine, one only needs to re-implement the machine-dependent modules. The same tachnique can be used
to provide some measure of portability across source languages. When this approach to portability is used.
the debugger implementer is essentially inventing an ad hoc intermediate level between the sourcr language
and the machine. We will see later that besides portability, other benefits can be realized if we fornlize the
intermediate level.

Attempting to provide portability across a family of compilers. the implementers of UNIX! designed a
standard symbol table format that could be shared by the compilers and debuggers on the system. Unfor-
tunately, although their design was fe wible, there are ambiguities in the “standard” that result in subtle
but significant differences in the symbol tables generated by different compilers. Also. while in theory th,s
approach ensures portability across compilers, standardization introduces other problems, as detailed below.

Unfortunately, the benefits o standardized symbol tables begin to break down when the problem of
oplimizing compilers is considered. The notations for a family of compilers sharing a back end must he
sufliciently expressive to accommodate the constructs oi all of the different source languages recognized. As
the conipiler more radically changes a program, the debugger must become more tailored to that compiler
and its target language, so that the compiler's code transformations may be decoded by the debuager.
The communication between the compiler and debugger that describes (he transformations. in the form of
symbol table notations, must become more complicated. These symbol notations must be able to represent
the composition of all of the various mappings induced by each part of the compilation precess  Tlis
composition can change as different transformations are requested or inhihited by the programmer, and ns
parts of the compiler are modified.

Modifying the state of & runming program is an important part of debugging. Unused or ufrequently
executed regions of code ean be manually tested for bugs by forcing the flow of execution to enter those
regions. This technigue can be simpler than trying to create the program inputs that will exercise that region
of cade Malfunetioning blocks of code ean be mumply skipped, and correct results can be substituted for
the incorrect values that wonld have heen generated by the skipped blocks. ‘This ability allows the user 1
continue execution, perhaps finding other bugs, and 1s an amportant feature when at a point i the executuon
history that is diflicult to reach

I the debugger pernuts nunor progeam changes duning debugging, how does it neconnpheds this” e
debingger can interpret the insetted souree code but tos ivaplementation makes the debogger more dependent
on the sonree language  The debugger enn compile the mserted soree code and pateh the result ato the
program text, but this minkes the debugger more dependent on the machine on which the progeanos runnime
As the allowed forms of souree level modificaten beeome more elabornte, the deligeer hias to become npeas
dependent on the source and macline language and the machine state, 1o translate these madifications of

the souree Jovel state anto changes e the state of the funmimg process

Uiy wa regintered tradematk of ATA LT Beli Laburatanies



2 Proposed Solution

We propose that debuggers be built similar to compilers, adopting and extending the abstract machine model
provided by a compiler’s intermediate language. If compiler implementers are responsible for supporting a
number of languages on several different architectures, then they are strongly motivated to use a common
intermediate language, and separate each compiler into a front end and a back end. A compiler front
end, consisting primarily of a scanner and parser, recognizes a given source language and generates the
intermediate language translation. Each back end of a compiler recognizes this intermediate langnage and
generates instructions for a particular machine. This separation reduces the amount of work involved in
building compilers, because instead of writing a separate compiler for each language-machine pair, only one
front end is needed for each language and only one back end for each architecture.

By centering the debugging process on the intermediate language, it is also possible to split the debugging
systeni into a small number of components. The debugger would consist of a front end that is capable of
mapping the tran-lation from source to intermediate language and a back end that is capable of mapping
the translation from intermediate to machine language. In reaponse to user actions, the front end generates
intermediate code that performs these actions. The back end executes this intermediate code in the current
context of the proge=m being debugged. Creating a delugger for a particular Innguage-machine pair should
be easily achieved by coupling the appropriate front end and back end.

The similarity between existing corapilation systen:s and the proposed debugging system is intentional,
Compilers and debuggers need to cooperate extensively to support source-level debugging  During the
translation process, a compiler must produce the symbol table necessary (o relate the source program to its
machine language equivalent. In our approach, the information required by the front end of the debugger,
mapping between the souree and interriedinte representations of the program, would be provided by the
front end of the compiler. Similarly, the mapping required by the debugger back end would he generated by
the compiler back end. Figure 1 depicts the relatienships between the compiler and debugger inour model

The mterface between a UNIN debugger and operating system ean be viewed ason version of onr proposed
design “The extended termediate language is actually the machine language. The extensions added to the

langeage to support debugging are the operntions supported by the system calls used by the UNIN debuggers

inter

compiler ) ~ compiler
front end mediate back end
_____ _ code
source source /rmedl machine
code lymbol wmbols code
debu;gu debu;gov
front end back end

Prav s b Proposed nodel of compaler debigger cooperation



The “back end” of the debugger is roughly the portion of the operating system that supports these calls,
and the front end of the debugger we have designed is the UNIX debugger proper. The information necded
by a symbolic debugger to map between source symbols and locations is found in a special part of the UNIX
file containing a compiled program.

A more sophisticated compiler might have a number of middle phases that perforin transformations on
the intermediate language representation of the program before a final code generation phase translates the
intermediate code to machine code. The debugging system for such a compiler would have corresponding
interior phases, not pictured in Figure 1. Each of these transformation stages would compensate for the code-
improving transformations performed by the corresponding middle phase of the compiler. The effects of a
particular code transformation performed by a stage of the compiler would be handled by the correspon-ing
transformation stage of the debugger. Each of these debugger stages would be both source and machine
languag : independent, and would only need to be changed if there was a change to the corresponding stage

of the compiler.

3 DBenefits

The separation of the debugger into stages should simplify the task of designing, implementing, and main-
taining a debugger that collaborates with an optimizing compiler. As new optimizations are added to the
compiler, our design ahould accommodate these transformations more easily than the traditional monolithic
design. The partidoning of the debugger should encourage modularity, portability, and reuse of code. Yot
the debugger ean still be efficient, because the abstractions in the intermedinte Innguage can be implenmented
in an eflicient way for a particular architecture

Changes to one part of the debugger can oecur in isolation from work on the remninder of the debugger.
Fast prototyping and implementation are more natural using this design, and new coneepts can be tested
without writing both a Innguage-speeific front end and a machine-speeifie back end. Sueh a partitioning of
the debugger allows interesting research to be done on each of the independent parts of the debugger 11
teans is nuplementing sueh a debugger, each part of the debugger can e written independent]y

Portability ix achieved by freezing the interface hetween the phases of the debugger, enther than by
standardizing the svibol table format. ‘This choiee of interfuee pernnts the compler nhd debugger (o
cooperate more eoflectively I partienlar, the implementers of corresponding phases of the compiler and
debugger can design the conmunication between those components that w most capnhle of representing the
translormations performed

Optimizing transformations made on the intermediate representation need only afleet the transformation
sages of the debugger For nomanohthie debugger, teansformations such as loop unrolling. eross pumping,.
aud procedure ategration can produrce ncompliented mapping hetween souree and nineline eode [Zein)
expecially when combined with teansformations peeformed by othee stages of the compler By compensating
for these transformations with o wpecisl transformntion stage, we msulate the user mterfaee and the minchine
dependent portions of wodebugger from these problems

Gring, thie dosapn aneremental chianges to the program are relntively stemphttorward  Fach stage of the
debugper st sapport aomechamsm for modiloing (e souree program andd s dviamie state Inoall of the

phases except for the last one, this modifiention of state s sy nonyimens with the transhatione of the peguest to



the nexi lower level, The stage that maps from intermediate code to machine code has two options: either
translate the change into machine code and patch the executable, or arrange for the changed code to he
interpreted. The other stages of the debugger are unaflected by which choice is made.

The primitives that are added to the intermediate language to support debugging provide a level of
abstraction. These primitives may have a variety of implementations, differing in efficiency, ease of im-
plementation, and intrusivencss. This abstraction allows the implementation of primitives to use special
debugging support offered by a particular operating system: and hardware, while retaining portability.

Since debugging operations are built from primitives in the intermediate language, the set of operations
supported at the user level can be enhanced without changing the back end of the debugger. For example,
given a primitive to watcli 8 memory location, we should be able to extend the capabilities of the debugger,
allowing it to continuously update a view of the contents of an abstract data structure, or dynamically
monitor the performance of a running program, all by changing only the front end of the debugger.

Although the separation of the debugger should make it easier to design, implement, and mnintnin
debugger for optimized code, it will not necessarily be able to unravel the effects of optimization any better
than a monolithic debugger. On the contrary, the separation should result in a lower level of debugging,
support than that provided by Navigator[Zel84]. This separation prevents various stages from coopernting
with the whole compiler to preserve critical data and program text. The level of support for debugging

optimized code provided by the proposed design should be comparable to that described by Hennessy{1lens2).

4 Design of an Intermediate Language for Debugging

Perhnps the most eritienl single element in the design of a particular compiler is (he choiee of the intermediate
macline model. ‘That choice is equally important to a debugger designed using our framework. Simee the
Inngunge chosen must alva support the compilation process, intermiedinte lnngnages used by existing compilers
(¢ ¢ . syntax trees, postfix notation, three address code) are the logienl starting pomts for the search
Although there x considerable latitude in the selection of an imtermediate language 1o be ndnpted for
debugging. the ehoree i not arbiteary, If we use an interpreter for the intermedinte lnnguage, we will prefer
interinedinte forms that are sasily anterpreted, such an three address code 10 the debugger s part of ananere
mental compiling system or an aintegeated progeamning, envitonment b should be ensy ta perform standard
editimg operations on the mtermedinte lnngunge, 8o program edits duning debugging ean he supported 1
a program woitten in this langunge 1w shghtly madified, (¢.¢., an wnertion or deletion of a few mstructions)
then the code in other parts of the progeam should not need (o change to nintam progeain correctiess
An exnmple s a telative beanch nstruetion, which only needs to be changed af there o chinnge i the
smize of the seetion of code heing branched over  In contrast, absolute branel isteuctions st be updated
whenever changes to the progeam alter the abwolute addeesses used i these structions “This s usnally
the e s for all absolute braneh mstruetions appeanng, after the pomt of change Also il imstractions i the
mtermediate Language simplietdy set condition codes then progenm chinnges wall requive enrelul nnaly e 1o

detertome when those vidies e e tunldly wsed



4.1 Extensions for Debugging

We want to express as many debugging functions as possibile in termis of the compiler’s intermediate langunge.
While this language may be a good start, it will probably prove insufficient. Our intermediate language
should be rich enough to represent most debugging opcrations, allowing them to be compiled. For example,
we could add an instruction to the intermediate language specifically to support conditional breakpoints.
llowever, a conditional breakpoint at the source level could be inserted by translating the evaluation of
its boolean expression into intermediate code and following that by a "branch-on-false" around a “pause”
instruction. For the sake of economy, we will introduce new constructs only when the compiler’s language
lacks needed operations, or when necessary to provide important debugging abstractions that may have
many implementations of varying efficiency.

In our framework, every intcraction with the program, including instrumentation requests, incrementnl
Lext changes, and advancing the program counter, is expressed with a sequenc: of instructions in the inter-
mediate language. We view program execution during debugging as two instruction streams, the program
itselfl and an “immediate” commnand stream. Interaction with the program occurs in the form of instructions
appearing on the immediate command stream.

To support interactive debugging, we add an operation that will temporarily install instructions at some
point in the program. The need to insert and remove groups of instructions is common for dehugging opera-
tions that monitor and control execution. In most debuggers, this operation is accomplished by overwriting
the monitored point with a special trap inatruction and saving the overwritien instruction for lnter reinstal
lation when the tracepoint is removed. When the trap instruction is encountered, the genernted exceplion
is fielded by the debugger, and the actions for a teaeepoint are performed,

A more desirable operation is actually installing the instructions that implement the traeepoint, and
subrequently removing them when the tracepoint is temoved. Thus, we add two aperations, cualled pateh
and unpateh, to the intermedinte language. When patching and unpateling in regions where the code lins
been nontrvanlly transformed, the snme flavor of analysis performed by the compiler s performed for the
tiserted group of istructions with respect to the pateh loention to ensure that the pateh is reasonable. Tn
some cises, A palch operation may fail beenuse the pateh loeation cannot be reconstraeted by the debugger,
or beenune the patch refers to values that do not exist i the transformed version of the program. Instanees
where a debugger smght fail to reconstruet informntion are described by Hennessy [HeaR2).

We alwo need an operation to identify and name a sequence of instructions as belonging to ngroup that
may be patehed into a program to support some debugging task, and then Iater removed - We refer 1o these
groups of msteuctions ax fragments and enll the opeeation for forimng them ereate

Many itermedinte Ianguages lnck nomeans of aceessing all of the memory loentions that could be
teresting during debnggmg  For exmnple, it mny be impossible (o tetpieve nonglobal values that see not
the current netivation record  Exnmplen melude most antermediate: languages used e camplers of ¢ aned
FORTRAN. In the case, we will need to modify the intermedinte Inngnage so that all values ool aetine
procedurex can be neeessed

‘I he progeamtner mny want to examie a single auelinngang state of the process | he debugper’s intenine
dinte Iangunge st inelude n menns of stopping, a runmag progean Alce examonng sl perhaps modidyng,

n rngle state of the process, the programmer iy eventually want 1o procesd toncdillerent process state



A means of resuming execution is also needed. We will call these two operations pause and resume.

In addition to starting and stopping a process, we will want other operations. These include the ability
to destroy existing processes, start new processes, attach Lo existing processes to debug them, and detach
processes after the user is done examining them using the debugger. Other examples of operations on
processes arc those that would support debugging in the presence of multiprocessing, using operations for
nanming and controlling multiple procecsses. Finally, a sophisticated debugger will want operations to save

and restore the state of a process.

4.2 Abstractions for Efficiency

There are potential drawbacks to splitting the debugger into separate pieces. One problem is that the hack
end will not know the “intent” of the front end. Consequently, efficiency may suffer. For example, tracing
changes to a memory location in a naive way can be very time-consuming. Existing debuggers [DECEK] have
used opernting system features to improve the efficicney of this operntion. One scheme is to write-protect the
memory page containing the monitored location. When the program attempts to write the page containing,
thie monitored location, an exception is generated, which is fielded by the debugger. Thus the debugger only
checks miemory references in the vicinity of the monitored location, often muking this monitoring operation
much more eflicient.

In our mudel. if the front end of the debugger specifies that 0 memory location should be monitored. bt
specifies tns action m a low level way, it imay be impossible for the back end of the debugger 1o recognize, The
debugger will not reahize that write-protecting the page of memory containing the monitored location nught
be advantngeons The front end will not be able to write-protect memory pages, beenuse our abstraction
hides the implementation of the back end. Instead, we need to express this low level operation in an abstrne

wiay

5 Example of Stage Interaction and Fraginent Insertion

The followimg exnimple shows Liaw the transformntion stages of a debugger net to compensate for the trans
formations performed by the compiler o the very simple looap shown an Figuee 20 "The trousformmtions
considered in this example are steepgth reduction and dead eod elimmuantiion These twa transformations
neting together ean replace n loop vanabl with other mduction vaniables Specifically, i tis example, we
will show how the debugger handles a request ta prant the value of the Joop varmble o at the begmnimyg, of

the loop body - AU that loention, the variable ©has been elimimated by the compiler

lln l o “."

Al

Pratan 2@ A mimple Loop



1 i—0 i—0
2 irl — A irl — A
3 (i>n)? (irl 2 nx 44 A)? (ivl > n x 4 4+ A4)?
4 goto skip goto skip goto skip
5 body :
6 le—4xi te—4xi
7 sfA+t] —... o[iv]) ~ wfivl] — ...
R i—i+1 Pe—i+]
9 iv] — vl 4+ 4 vl ~irl +14
10 (i <n)? (irl <nx4+4+ A)? (ivl < n x4+ A
11 goto body goto body goto body
12 skip .
Original Strength Dead Code
Code Redueed Eliminated

FIGURE 3: Intermediate code at three stages of compilation

The interinediate code is shown in Figure 3 as it is being transformed by the compiler. Some blank
rows have been inserted in the first and third columns of code 1o visunlly preserve the correspondences
hetween versions of the loop as it passes through the compiler. The first columin of code is n straight forward
translation of the source loop.

The wecond column shows the code after it has been subjected to strength reduction. Note the added
statements at lines 2 and 9, and the changed code at lines 3, 7. and 10, 'The compiler has introduced nonew
induction variable irl, to take over most of the uses of the loop variable |,

The third colutin is the code after it has bren subjected to both strength reduction and dead code
elimination. Dead cade elunination has removed all the oecurrences of i, which were supesfluous nfter ]
had heen added. The two oceurrences of nox 4 4 A will be eleaned up by w Inter phase of the compiler that
handles constant and shared expressions,

To print the value of i in the loop body, the front end of the debugger will try 1o insert the fragmen
print i after line 5 of the intermediate code. "The correnpondence between the hody of the loop i the
source progeam and hne 5 of the itermiediate code i determined by the front end ol the debugger, using
informntion recorded by the front end of the campiler ‘That stage of the ninpping s not diseussed here, il
v assumed to exint In the Onginal Code cotumm of Figare 4, the fragiment from the front end s shown as
it would appenr after inserhon.

I e stage of the debugger hnndling strength reduction ean perform this isertion request by teanslatog:
the fragient mto ats sqpuvalent formg, mapping the fengnent anwertion pomt bhefore stpength redaction 1.
the equivalent msertion pomt after that tennsformation (Beeause of the way T hnve immbered statements
sl 1t Blank hoes e thin example, thin loention mappang, i trvial ) Also, this stape of the debnpge
will tenidate nny datn Joentions naned an the fraganent, ax needed 10 appears that ne trnesdation of 4o
pevde . becnume that variable exists before and after teanslntion The feagment, ceanslated to catnpensate fog

<trength eeduetion, s shown i the Strength Redueed colimm of Taggure 4 anoat wonld appeat altes inesettion



To actually accomplish the insertion request, the strength reduction stage of tl:e debugger in turn asks
the next stage of the debugger, the stage Lhat compe~sates “ ;r dead code elimination, to insert the fragment
print i. However, the compiler eliminated i during dead code elimination. This makes it impossible for
the dead code climination phase of the debugger Lo translate the fragment being inserted into something
meaningful for the next stage of the debugger. Thus, the dead code elimination r-hase of the debugger reports
to the strength reduction phase that the fragment print i cannot be inserted. This failure is depicted in thie
Dead Code Eliminated column of Figure 4.

A particular phase of the debugger attempting to insert a fragment could simply always report failure
to its preceding phase, when faced with a report of failuie from a subsequent phase. This is a valid action,
but better courses of action may be a*ailable to that phase of the debugger Better support of optimized
code will result if phases try different translationr of an insert fragment operation that has failed. The inscrt
fragment operation requested by the preceding stage succeeds if any of the translations of this operation can
be performed by the subsequent stage of the debugger. Thus, for each stage of the debugger, the success of
a fragiment inscrtion is the disjunction of the successcs of all the translations of that operation.

For instance, when faced with the failure depicted in Figure 4, the strength reduction phase of the
debugger could try a different translation for the original fragment. The strength reduction phase of the
compiler ereated synonynw of the loop variable, new induction variables that are affine functions of the
original loop variable. Using information recorded by the compiler, the strength reduction phase of the
debugger can react to the failure of its first attempt at insertion by restating the fragment in terms of the
new induction variable. In this case the fragment print i is translated into print (ivl = A)/4 as it passes
through the strength reduction phase of the debugger. Figure 5 shows the successful fragment insertion,

The suceess of a particular fragment insertion performed by a phase of the debugger can also depend on

the conjunetion of the suecesses of a collection of fragiment insertions perforied by the subsequent debugger

] i—0 i— 0
pl ir] - A ivl « A
3 (i >n)" (vl >n> 44 1) (ivl >0« by )
1 goto skip goto skip poto skip
h body
print i print i print "

6 t 4 =i fo- 4 x4
7 ofdd e sl ofivt] -
A P04 P-4
il el o el 4 1 ivl e irl 414
10 (i v n)"’ (ivl <« =44 A) (el « =4 )
11 gotor body goto body polor body
1 akip

Orniginnl Strength Daesued Cronle

Cude Hedueed I it ed

Pigvnrr 3 hatermedinte code, showing, a fragment inserbion



1 i—0 i—0
2 ivl — A ivl — A4
3 (i 2 n)? (ivl > nx 44 A)? (ivl 2 nx4+ A)?
4 golo skip goto skip goto skip
5 body :
print i print (ivl — A)/4 print (ivl — A)/4
6 t—4xi l—4xi
7 w[A4t]—... sfivl) — ... wfivl]) — ...
8 f—i+] i—i+1
9 ivl — fvl +4 trl — vl +4
10 (i < n)? (irl<nx 44 A)? (ivl < n x4+ A)?
11 goto body goto body goto hody
12 akip :
Original Strength Dead Cade
Code Reduced Eliminated

FiGune 5. Intermediate code, showing a fragment insertion

phase. A translation of that particular fragment may involve several fragment insertions, all of which must
be successful for the translation as & whole to be successful.

For example, if a fragment is inserted within a region of code that is really two merged flow paths,
path-determiner breakpoints must also be inserted before the start of the merged region, These breakpoints
determine which flow puth was actually taken, the path to the region of code that actually contained the
insertion point, or the matching region of code that was merged to it. If either the true breakpoint or its

path determiner breakpoints cannot be inserted, then the whole insert operation fails.

6 Implementation of the Debugger

In geneeal, an object-oriented framewaork for the debugger seemn helpful, such ax Cargill's representation of
processes and frames ax objects[CrrRG). Portions of Cargill's design apprar to he adaptable to the needs of
our design Some of the messages he derctiben would require exten arguments to aceount for the inereased
complexity canned by optimization. By changing the class hirrnrchy, the mappings enn be deeamporad into
the individunl mnppings performed by the compiler.

A debugger built in accordance with our design would probably be part of an integrnted progenimmmg
epvironment. The lnrge mmmount of information shared between the compiler and the debugger mnk oo
progemmmng environment a dosienble setting Some of the code implementing the compiler could be ndanted
for use by both the compiler and debugger  Alio, with minor mod:fieations, nnguage tools e enren
progeaminmg ens iconments, such n mouree code hrowsers and editors, could e ased by the deluggen

T he debugmg system for n compler that perforns optimizing, transformations on s antermediate pep
tesenitation would ecmprive asmgle front end tht maps from souree code to mtenmediate codeacollestion

of transformation stages that wnp from intermedinte to intermedinte, nnd o fland back end that minps from



intermediate code to machine code. We discuss these phases in more detail below.

Front End

A particular front end for a debugger shouid be tailored to debug programs written in a specific source
language. Ideally, the user interface allows the programmer to express as many debugging functions as feasible
in the particular source language. The commands are parsed and compiled into the debugger’s intermediate
language, perhaps using parts of the compiler developed for the source language. The comitands are then
passed to subsequent stages of the debugger. The commands generated by the front end are either accep.ed

or rejected by the back end, depending on whether or not the operation can be performed.

Transformation Stages

Each of the transformation stages of the debugger unravels the effects of a particular optimization. Requests
from the preceding stage to create, insert, or remove fragments are translated into slightly different requests
and sent to subsequent stages. A request to insert a single fragment can result in the inscrtion of many
fragments in subsequen. stages of the debugger. For instance, to place a breakpoint in a eross-jumped
region, the original hreakpoint must be supplemented with path-deterrainer breakpoints [Zel&1). References

to memory in the original fragment are renamed to reflect the new locations of the desired values.

Back End

The back end mnps the abstract machine presented between layers of the debugger onto the target machine,
It can have a wide ;ange of implementations, varying in efliciency. ease of implrimentation, and portability.

For fast prototyping, a simple interpreter for the debugger's interniediate language might he selected as
a back end. This choice would yield a quick implementation, allowing the other parts of the debugger ta be
developed withot aelay. However, the resulting back end might be slow, adversely affecting the performance
of the whole debugger,

If efliciency of the back end is a concern, the debugging operations sent to the back end. represented in
an interiediate langunge for debugging, could be incrementally compiled, thereby reducing the nmount of
interpretation perforted by the debugger. These compiled fragments could then be patehed into the compiled
code, reducing handshaking and context awitches when performing the debugging operstions implemented
by these fragimients.

In between these two extremes, in the possibility of a hybrid scheme that runs the anehanged code i its
coinpiled form and iterprets any changes. As an example, under UNIX, the back end could consist of twa
separate processes, the baek end and the monitored process, with the monitored process controlled vin ealls
to the operating syatem. We would expect that the efficiency of a debugger using this hybrid hack end wonld
be no better than a strmightforward UNix debugger having a complexity simsilar to oar bnek ~nd. Sinee the
UNTx systemn calls eployed are the bottleneek in these debuggers, eflicieney would only he unproved it the

miniber of theae ealls were fedueed, perhaps throngh more thorough aualysis of the program



6.1 Interaction with Program Edits

A sophisticated programming environment should support incremental compilation. In response to program
edits, the system incorporates corresponding “edits” into the compiled version of the program. If the program
is being debugged when an edit occurs, it may be desirable to edit the state of the monitored process, without
restarting the program, if possible.

Although edits of the process text and state could be implemented using the patch and unpatch primitives,
these debugging operations are inappropriate for supporting process edits. Edits of the process text differ
from the patches applied to support debugging. Debugging patches are transitory, being applied to return
control to the user or to monitor some condition. Edits of the process text ar. more permanent, reflecting a
decision by the programmer to change some part of the program.

6.2 Impure Code

Some of the proposed intermediate instructions can be called meta-instructions, since they can alter the
text of the program. That is, they represent, and are easily implemented as, scll-modifying code. This
implementation may be a problem when debugging programs on machines that we. designed with the
assumption that sell-modifying code is rare or unnecessary. For example, such an assumption might be
made in designing an instruction pipeline, in order to improve its speed. However, this restriction will be a
problem for all interactive debuggers written for such architectures. The abstraction present in our design
actually gives greater freedomn to easily change the machine dependent part to suit the particular hardware.

Since we can specify debugging requests in an intermediate language, there arce several possible inple-
mentations of requests. We can convert code modifications into data modifications, reducing the number of
mudifications to the instruction stream by modifying data instead. To accomplish this conversion, the back
end nllocates a new memory cell 1o hold a flag, and adds a branch, dependent on the flag's value, around
the patched fragment. When an unpalch is performed on this fragment. the action of removing the frogment

can be performed by changing the value of the flag.

6.3 Debugging at Lower Levels

A programmer using any source-level debugger will in some instances need to use a lower level of abatraction.
For conventional debugyers, this lower level is the generated machine code. "The desire to change to thin level
cap oceur when the user is unrure of the apparent behavior of generated code. This uncertainty ean arise
from bugs enused by errors in a compiler, defects in the hardware, the urer's dizheliel of the events actually
happening, and a host of other caunes.

In our maodel, each of the interfaces between stages of the del.ugger represents n level of abstraction that
may be interesting to a programmer. By examining the program at various levels, an sxperienced user ean
understand the effecta of optimization. When the user inspects a program object at one viewing level, the
corresponding ohject or objecta at a different level can be emphasized. By displaying these correspondences
between objects from different levels of the program. the state of the transformed versions ean be related
to ench other, and hack to the original souree program. For example, if the user selects n progenn location
in the souree, all the possible corresponding progeam loeations in an intermedinte Ianguage version of the

progeam could be lnghhghted



Also, optimizations that hinder debugging can sometimes be avoided by dropping to a lower level of
abstraction. At lower levels of abstraction, the insertion of a fragment is more Jikely to succeed, because the
tranelation of that insertion into machine code is more straightforward. For example, sctting a breakpoint in
an inlined procedure would entail patching fragmentas into all the copies of the procedure body replacing the
call sites. The patch operation for one of these copies might fail, because of optimizations occurring only in
that copy. By dropping to a level where the user can set breakpoints for individual call sites of a procedure,
the one troublesome patch can be avoided.

7 Research

Previous Expericiuce

As part of Rice University's " project [CCH*87) to build s programming environment for scientific software,
we designed and built EXMON, a debugger for large, computationally intensive programs{CHE&7]. In the
course of that effort, we encountered severai problems in extending our design to provide more functionality.
We chose & hybrid design for EXMoON, allowing the monitored process to be a mixture of compiled and
interpreted ccde, This mixture allowed trusted parts of the prograin to be executed quickly, but with
minimal debugging support, and r1spect portions of code to be interpreted, with greater debugging support.
For our representation of interpreted subparts of the program, we chose the abstract syntax tree, which was
the source representation used by R".

Unlortunately, this representation proved to be too close to the source language. and too closely de-
terinined by the needs of the source editor. The addition of new source language dialects, the evolution
of the source editor, and changes to other parts of the programming environment repeatedly changed the
structure of these trees, and these changes in turn required corrections to the interpreter and other pares
of the debugger. This experience with EXMON provided some of the impetus and insight for this desigu.
The research we propose is an attempt to overcome some of the problems with conventional debuggers thiat
we hiave encountered. We hope io demonstrate that this new design for debuggers is frasible, - Tective for

dchugging optimized code, portable, and efficient.

Available Tools

For our debugger's intermediate language, we have chosen to extend 1Loc¢, a fairly simple three-address code
in use at Rice University. 1L0C was designed as an intermediate language for optimizing compilers, and is rea-
sonably suitable as a foundation for cur debugger's intermediate representation. A compiler for 1LOC eXisls,
and alrendy has several transformation phases, including value numbering, dead code elimination[Kensl),
strength reduction[C'K77), and partinl redundancy elimination[MR749)[[DSER].

A Tully interpretive back end for this extended version of 1.0¢ exists.  We anticipate changes to the
interinediate language, so the efliciency of the interpreter is not yet a great concern.  As the language
breotes miore stable, we will investignate officieney imnes in the back end. A hybrid back end has been
designed by Mike Jones and Bob Hood, which supports a compiled progeam text patehed with interpreted

fragments  Using thin hybrid baek end, the efticiency of common debugging operations will be studhed - A



modified version cf the R" debugger will be used for the initial version of the user interface and front end

of the debugger.

Research Plan

We are designing parts ol a debuggei-compiler pair. trying to preserve opportunities for optimmzation hy
the ¢ympiler. rather than con~ rain optinizations to preserve debugging support. Thus, the emphasis of
thic research is on d=bugging optimized code, rather than optimizing debuggable code. Debugger phase.
compensating for the transformations dead code elimination, strength reduction. value numbering. and

parnal reJundancy cilmination are being designed.

e Dvad code elinunation is an important inclusion because its effects are difficult to reverse  Hen-
nessy in particular noted global dead code elimination as an optimization that impaired debueging

sup; ort[llens?)

e Strength reduction was included because the multiple translations eamly obtaiable from 1! i~ trans
formation are an mmportant a-pect of the fragment transiation  Strength reduction and dead voile
elinunation together show promuse as transformations whose mappings are separable. b wil, o
g~ther produce a non-trivial transformation. in this case loop induction vanable elinmation  Also we
feel that the intermediate language used in the compiler may be an interexting medium fur the private
comrmumieation of transformation informati:*a be.ween the strength reduction phases of the compiler

and debugger

« Value numwoeriag and parial redundancy el.mination were added to give the collecties a pealistie
anmwund of complexity  Value numbering was chosen over sintular data optinuzations because 1t is
currently urad 1 the R™compilir develop.a at Rice, as v partial eedundaney elinunation The etfects
of salue numbering on the debuggabihity of the generated code shonld be sunilar to that of any algonthin

for falding constants and elinunating  smmon subegpressions

Debugger transformat,or stages for pegister ailocation, crose jumpine, leop uneolhng and procedua
mtzeaton also show promse i compensatieg ior these teansformations However acdebugeer phase tha
compensates for pagister allocation probably will not be stadied directly as part of this research A realisne
teeatine i for pepaster allocation woulld also mvolve al' ne other transformat.ons found m the code generat
phwe of 2 compels | suel A marnetion selection, imscruction: seheduhing and peephole optumzanoens \
debugeer phase for the resulting mapping wonld be hard to design unplement. ce sondy I8 implemente!
o perfoemnee of the debagger phase s terms of & particular back end transformation wonld Lo haea 1.
aaluate becaues the offects from all the diffeeent back end optinzations wonld be dithicale teseparate el
L Lt

Voo ceeture that aosteeghtforward compoaiten of many sunpls mppines can be useg tooccangpensats
by ctagler teandrnnatt s Lor evainph spaple ceoas pumgang ap pears ooy poe ITERCRNTITITHONS [T
v whale Lepeated cross pmpang pee b es mere compheated moppmes 208U e nenedrbae g
m

foeei e fok Navagator pepresents the cong st of te e ebual sinpel e < the ot by

create Uy erged regn one Wee o will coniears the e gpeabalities o aaned weeehithe g e -Vl e e



cross-jumpings with those of a mapping produced by conceptually composing simpler mappings, each of
which represents only simple merges without repeatedly merged regions.

The knowledge of when to inhibit a transformation may be difficult or ineflicient to garner in a compiler
that leaves all the mappings uncomposed. As an example of this effect, the composition of simple mappings
that we propose may unfortunately vield a poorer handling of cross-jumping than that provided by a mon-
lithic mapping. The level of debugging support should be similar to that described by Hennessy Henx2;, and
wili be compared with it

We expect that changes to the collection of transformations will be simpler if the mappings of
tran<forinations performed by the compiler are left uncomposed. We will investigate one aspect of thas
by studving the eflects of interchanging and repeating the various transformation phe  of the compler
and debugger It may be the case that cach stage of the debugger wili contain hidden assumptions about
the nature of the stages following them. and that disturbing the ordering of the stazes seriously ampairs
det-ugging support. The character and seriousness of the degradation in dehugger support resultung from
these changes will be studied

For a debugger using the monolithic mapping. the interaction bet -en a new transformation ad each
existing teansformation must be considered We feel that by leaving the mappings uncomposed, the inter-
artien between existing transformations and an additional one is reduced  We will imvestigate this theors
by exavuming the effects of adding anather contral flow optimization, such as loop peeling Loy 778 to the two
optizations researched by Zellwoger, and noung the impact on the overall design

Y allity 1o present dferent levels of abstraction, deseribed eathier in section 63 wall be staediesd Hie
alpton of thus mechamsin as a tenneque for fullowing and understanding soures to souree translormations
wi ! aise be attempted  Among the important problems remiaimmg i developang this 100l ane mapping the
cursof from one level to the next, displaying this information o the user an an widerstandable manner,
fiitering out extransous intermediate language statements ad-bed durning itermediate steps of the compales’s
aptinnzation process, and defimng & small but useful set of debugging commands at these Jower Jevels We
wiil atdy tie benefite and probilems resulting, from allowing aceess toantermesdiate languags: eepresutatens

o the progeam

8 Conclusions

We v dese pibeedd apew desgen o e bnggers that uses astructaree analogongs toothoe o necdafar e
Ive lebagger s soparass Uoanto stages coftespending to the parser optimiger an b cade generator oot
Cqogabeor Fach of these st of the debugeer s pesponsbde for aneaveling the rranstormate ns pertorne |
Fa vne o appespeeteding stagee o e corngader e stages o e deborsger cotmume ate asing anointerme 4ot
i eeage cberved Yy extonedig the rompaler s terngesdiate angnage wath provtises Cosnprert debggene -
s apg reachs cdesignesd toomprone the conperation between the compaler ancf the de bt espe
wiep b ugerrg cptamged o de o frameworh shoeald allow mamy debagger neovens v be tpansbaned e
vpee byt - Beoand perhaps mas e code penltg i mieere o et exeote oo thee o s 1
co e s Ve dhe b e et perrab ity and mosdalants of the debneesr Wheso ol e Da
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MDB - A Parallel Debugger for Cedar
Perry Emrath Bret Marasolf
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Center for Supercomputirg Rescarch and Development
University of Illinois at Urbana—Champaign
104 S. Wright, Urbana, Dlinois 6180

Mdb is a parallel debugger that was developed for debugging programs on tlie Cedar
multiprocessor architecture, a prototype machine assembled at the Center for Supercon-
puting Research and Development, University of lllinois. Mdb was designed to provide
users with the ability to interactively examine the data and control structures of an exe-

cuting parallel program.

The design of mdb is different from many interactive debuggers in that rather than
being a separate process which controls the target program through the operating system,
mdb is a package of functions that are linked with the target program. While this means
that mdb is not totally isolated from the target, it has the advantages of being relatively
simple to implement and can examine large amounts of program state very efficiently.
Buth these advantages stem from the fact that program state is directly access.ble
without requiring any operating system scrvicea,

The structure of the mdb packuge was motivated by the way processes :xecute on
the target architecture. The Cedar architecture is » multi-cluster architecture with a
hierarchical shared memory, with each cluate: containing multiple vector processors. A
parallel program runs on Cedar as a parallel process which consists of multiple tasks,
Each of the tasks within the process executes on a single cluster, and may run on multiple
processors within the cluster, from one up to all (R) of the processors in the cluster. The

Xylem operating nystemn, based on Unix, pt »vides services to support these abatractions.

To control the process it is necessary for the debueger to have control over all tanks
in the proceas. Thin in achieved by having the ability to communicate between tasks by
placing data in shared memory and sending interrupta using facilities in Xylem. Mdb
comes in two flavors, a standard version which is used by linking & program with the

Thin work was supported by the U, 5. Department of Energy under grant number DOE DI

1602 RBISR26001 with additional support from the U, S, Air Foree under grant number AFOSR
90 0044 and LB.M. through the C.S.R.D. Aflillates Program.



~ldebug library, and a stripped down version which is included in the C run-time library.
The minimal version gets linked with every program, so users always get at least this

level of debugging support, and can simply consider it part of the operating system.

To allow entry into the debugger, mdb initializses the signal handler interface to
have most traps and some signals handled by the debugger. This initialisation is per-
formed as part of the run-time library startup code for the first task in the process. As
other tasks are spawned in the process, these interfaces are copied so that all tasks will
normally enter mdb when any of the caught signals occurs. Mdb catches the QUIT sig-
nal, so while a program is executing, the user may interrupt it and use mdb to examine
the state of the process. Alternatively, the user may insert a call to breakpoint() or

panic() in order to enter mdb at that point.

The firat task that enters the debugger becomes the controlling tas.: and interrupts
all the other tasks within the process as quickly as possible, using [acilities available in
Xylem. As the other tasks enter the debugger, they block to wait for further commands
from the controlling task. The controlling task then sets about reading and executing

user commands.

'.'o the user, mdb is similar in nature to a con'entional breakpoint debugger, such as
adh. Ho'vever, mdb knows about the multi-tasking model described above, as well as the
architecture of the Alliant multi-processor. Commands are provided which allow the
user to examine the entire state of the program, which includen shared memory, private
memories, any of the registers in any of the processors, and certain system state vari-
ables. Memory can L~ displayed in a varicty of formnuts, for example hexadecimal or
floating point. In the full version of mdb, an instruction format is provided to allow pro-

gram disassembly.

All commands are executed by the controlling task, which limits the scope of the
commends that can be performed. The controlling task is able to examine the memory
shared between all tasks srd to examine the memory that is private to itsell. The con-
trolling task Is not able to examine memory that is private to any other task. To exam-
ine the private memory of another task it Is necensary to change which task ls the con-
trolling task. A command switches (or selects) the controlling task by having the current
controlling task aend s message to the task which in to becopie the controlling task. After

control has been tranaferred it in ponsible to examine the memory that in private to the

new controlling task.



In addition to examining the memory of the task, the controlling task can also
examine the hardware specific state that was saved when the task entered the debugger.
This saved state includes general purpose registers, floating point registers, vector regis-
ters, and concurrency registers. These values are saved for all of the processors assigned
to the task. Similar to the way that tasks arc selected, a processor can also be selected
and then all the saved values for that processor can be examined.

In the full version of mdb, the user can load the symbol table from the executable
file, after which symbolic names can be used in expressions. Values can also be displayed
as symbolic addresses. Decoded instructions and call stacks will also be displayed with
addresses in symbolic format.

After the user has examined the state of the process, the proceed command allows
all tasks which have not encountered an error to continue execution. Tasks which have
encountered an error remain waiting in mdb until the process exits. A few other special
commands are also provided. One returns the (start address of the) handler for a
specified signal. Other commands give the user information about the object file from
which the symbol table was loaded.

Since a minimal version of mdb is linked with all programs, it must also function
when the program s run non-interactively. When a process ls started, mdb attempts to
determine if the process is being executed Interactively or not. If the process is being exe-
cuted interactively, then the debugger functions as described above. If not, then when the
debugger in entered it executes a short list of commands, placing the output in a file, after
whick the process aborts. The commands attempt to provide the user with enough infor-

mation to determine where the task was when it entered the debugger and why it entered
the debugger.

Mdb ha~ been developed as a tool to allow the user to examine a currently executing
process, but it does not allow the user to make any changes to the process. Future work
ls being considered to allow the user to change values In the process and to set break-
pointa. Even without these enhancements, though, mdb has proven to be a very useful
tool for debugging parallel programs. The capabllities of mdb have evolved as It wan
used to dehug Itaell during development and the user interface was refined repeatedly as
continued use suggeated changen to make debugging easler. Feedback from the user com-
munity haa generally been favorable and a significant number of real bugs have been

eanily and quickly found onee the faulty program was linked with Ildebug.



A replay mechanism within an environment for dis-

tributed programming

S. Chaumette

LaBRI, Laboratoire Bordelais de Recherche en Informatique, URA numéro 1304, Université
Bordeauz-1, 351 Cours de la Libération, 38405 Talence, FRANCE.

Most of the languages for distributed programming provide non-deterministic constructs.
Although enabling efficiency enforcement and increasing expression facility, these constructs
lead to the need of replaying an execution when willing to debug an application. The aim of
this talk is to describe a replay mechanism and how it is used for debugging purpose within a
programming environment. The description will encompass many aspects of this meckanism,
from its semantics up to a use example which will be emphusized by means of a debugging
session; an efficient implementation in a centralized simulator will also be expounded. 1 will
conclude with remarks concerning non-intrusiveness of debugging mecharisms. This work" is
part of a research carried out at LaBRI (Laboratoire Bordelais de Recherche en Informatique)
which consists in designing a programming environment for distributed memory machines.

The model: proving non-intrusiveness of debugging mechanisms

Our model is that of ezplicit parallelism, that is a prograin is expressed as a set of processes
communicating by niessage-passing, via a medium called a communication port (as in CSP).
The non-deterministic primitive it provides (which is called ready) enables to select among a
sct of ports, one frrm which a message is ready to be reccived. The replay technics rcau.i.»
a reference execution during which local traces with minimuin information are recorded. .ornl
monilors are then deriveted from these traces and are used to control a reerscution. it has
been proven that this mechanism has no influence over the behavior of the set of pro.csses
under control: it is non-intrusive. The fact that the semantics of the language and that of the
controllers have been modelized makes it possible to prove this property.

Replay: a debugging support mechanism

A non-deterministic program can be drawn as a tree, cach branch of which is a possible
path of the non-deterministic behavior. Assume a bug occurs in one of the branches; then,
another execution may follow another path, preventing the bug to take place again. The replay
mechanism ensures that the same branch is used, what will enable to reproduce the bug and
eventually to understand it vo as to correct it,

n ereculion

l l ercenhio
’ \.__.‘\ o —— e bugay branch d N
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. e
buggy execution correct execulion

It in almost impossible to debug a non deterministic progeam (what i« most often the ease
regarding distributed programes) withovt any replay mechanism.,

Implementation: debugging versus efticiency

When implementing this mechanism on a distributed machine, in the most st raight forward
manner, some problems arise: the trnces, which are generated locally (at each processor node),
need to be colleeted on the host computer; the number of processes during a controlled execution
i twice the number of processes of the application sinee one controller is created for each process;

*Thie work i supported tn the Fiench Compdinated Renearech Program C ol e CNRS, CNRS and Retglon



the recorded traces must be downloaded from the host computer into the controllers. This
implies overhead and heavy load of the communication network. Anyway, this implementation
is a good one, in that it does not require recompilation of the application, what is a time-saving
and safe debugging technics.

Our environment provides a centralized simulator-debugger which is implemented so that the
simulation of any number of processes requires a sole UNIX process. This makes it possible to
build the controlling mechanism in the code simulating the communication system: this prevents
increase in the number of (simulated) processes by suppressing replication of the controllers;
the overhead due to the collection and distribution of traces is also discarded. No recompilation
is needed.

It should be noted that it is possible to implement this mechanism in an efficient manner
on a distributed machine.

Debugging session

There are many distributr 7 applications, such as ray-tracing or matrices block calculus, which
can be expressed using non-deterministic constructs. For the sake of demonstration, use of the
mechanism can be shown on a simple problem which consists in computing the quotient of two
numbers. Aisume two processes (process 1 and process 2), each computing a value. Another
process (the one in which we are interested) receives these values (via ports pl and p2) and
computes their quotient x=(value sent by process 1) / (value sent by process 2). This last
operation can be achieved using a non-deterministic algorithm in order to enforce efficiency by
receiving the values “as soon as possible”.

begin

irl i=[p1,p2);
p:=ready(set); receive(p,x1);
seli=put-p;

pimready(set): receive(p.ad): o= value aent by process £ o value sent by process |
I"T'”“" value sent by process | value aent by process £

end.

The sample buggy program The two possible behaviors of the sample program

A proposed solution is shown on the above figure. Unfortunately, such a program will
exhibit not only a non-deterministic behavior, but also a non-deterministic result: it ir buggy
ithe error is made clear on the figure displaying the two possible behaviors of the process). If
one could trace, at run-time, the values of the ditlerent variables when the result is not that
expected, then the problem would be elear and the solution straightforward. This is why the
replay mechanism is necessary: without it, any later experiment may lead the program to go
through the branch which leads to the correct result, making any debugger useless, The replay
enables to reproduce the buggy execution, The correction to apply to the program is to test
which is the port on which we are recoiving, 8o as to know if the received value is the numerator
or the denominator (i, comes from process 1 via port pl or from process 2 via port p2).

This is only one example, but the reader can easily imagine how replay can be useful in
various (mmore complicated) cases,

Conclusion: debugging and non-intrusiveness

In thin talk, 1 show the swnportanee of u replay mechamsm as o support for debugping, the
importance of ite proof,and how it can be efficiently vmplemented moa centrahized somulator. AL
# higher level of abstraction, the approach used for this tool, especially regarding, mode lzation
and non-mitrusiveness proof (which in necossary for delugping, purpose), should be kept e mind
when destpning, any debugging moechanism.
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ABSTRACT

Complexity and nondeterminism can produce unpredictable results in parallel programs.
An effective parallel debugging environment must manage both of these impediments.
Described here are five novel solutions resulting from a combination of existing
techniques for e~ecution replay and behavior analysis: (1) examination, analysis, and
modification of events that have yet to occur; (2) cooperative analytical strategies that
combine conventional ¢zbugging, graphic state mapping, and behavior-oriented analysis;
(3) experimentation with event ordering in suspect program fragments; (4)
communication-related perfonmance measurement; and (5) analyiical capacity that is
potentially scalable with system size.

1. INTRODUCTION

Debugging is an important activity in program development and maintenance [1]. It can
be particularly difficult with parallel programs, since they are often complex [21 and can
behave nondeterministically [3]. To a great extent, this complexity arises from
interactions between multiple loci of control in what are typically large applications.
However, sequential and paralle! debugging differ most in that concurrent programs may
suffer from intermittent errors. Such problems arc manifestations of races. This is a
condition that may exist when two or more threads of contro! participate in
unsynchronized access 10 & common resource.

Paces are well illustrated by the the readers/writers problem (4]. Imagine several
independent processes that manage a bank account. Each of these may carry out three
types of operations. obtaining an account balance, crediting deposits, and debiting
withdrawals. The steps required for each operation are shown below:

Obtaln Balance | Credit Deposit Debit Withdrawal

READ Balance RFAD Balance READ Balance
ADD  Amount to Balance | SUBTRACT Amount from Balance
WRITE Balance WRITE Balance



Balance operations merely read the account balance without changing it. Consequently,
any number of balance operations may occur successfully in parallel. In contrast, both
deposit and withdrawal operations rewrite the account balance. If two such operations on
the same account overlap, the balance will reflect only the last operation to complete.
Transactions can be guaranteed only if operations that write to the same account are
serialized. Without this synchronization, a race condition exisis, and transactions are lost
unpredictably. Furthermore, such nondeteiministic results vary from run to run.

When atternpting to identify the source of the problem, a programmer must contend with
multiple processes. In addition, since the error is dependent on relative process speeds, it
may only occur intermittently and may not be readily reproducible. Errors may c!so be
masked by a debugger that impacts process speeds nonuniformly. This phenomenon is
often referred 1o as the probe effect [5].

We are currently developing a prototype debugging environment called PARADIGM.
This system is being used to investigate techniques for debugging programs on
unmodified message-passing multicomputers. PARADIGM addresses both
nondeterminism and the probe effect through execution replay [6-13]. This approach
permits intermittent errors to be captured and reproduced. Execution replay 1s discussed
in section 2.

PARADIGM marages complexity by means of behavioral abstraction [13~23]. This
approach treats a parallel program execution as a collection of event streams. Distinct
events represent selected program actions. By recognizing and matching related events, a
behavioral abstraction system can reveal interactions, dependencies, and trends. This
strategy is discussed in section 3.

Considered individually, execution replay and behavioral analysis are valuable debugging
tools, but together, their potential exceeds the sum of their individual contributons. The
benefits of this synergy are discussed in section 4.

2. EXECUTION REPLAY

Errors in parallel programs often involve races. Their reliable capture and study therefore
require that both nondeterminism and the probe effect be addressed. Execution replay is
one approach that has been applied successfully. With this scheme, debugging is divided
into two phases. In the recording phase, information critical to the ordering of events is
collected during execution. Checkpoints may also be made. In the replay phase, the
exccution is reproduced by enforcing the same partial ordering of events as recorded
previously. Consequently, errors arising from nondeterminism are preserved.
Furthermore, the replayed execution may be paused, single-stepped, or rolled back to a
checkpoint without impact from the probe effect. During the recording phase, however,
perturbation results unless special-purpose hardware is used to collect the event ordering
information (24, 25]. A software-only approach mus therefore minimize its data
gathering during recording or risk invalidating the information collected. If sufficiently
unobtrusive, software-based instrumentation might be left in place.



Future generations of parallel machines will most likely have at least some monitoring
support hardware [26]. At the present, however, these facilities are costly, ar.d the
debuggers that use themn are nonportable. For these reasons, PARADIGM employs a
software-oriented approach that makes full use of =xisting hardware, but does not require
the addition of debugger-specific equipment. Machine dependence is confined to an in-
place component called the event interface. This portion of the debugger exploits any
existing hardware to record and replay a parallel execution. During replay, the event
interface also passes information on program behavior to resident analysis facilities.

The event interface supports passive collection of program events [27]. In other words,
rather than capture data with special-purpose libraries or user-supplied instrumentation,
kernel-resident facilities capture events as they occur. Kemel dependence has its
drawbacks, namely, that porting the event interface to a new platform requires expertise
in kemel programming and access to kernel source code. However, the benefits of
implementing the event interface at the kernel level are substantial, for example:

* Nc special-purpose hardware is required, but any that is present can be used
effectively.

» The probe effect is kept acceptably small, even without the aid of special-purpose
hardware.

» Compiler or iibrary modifications are obviated, and debugging is language
independent.

* Replay capabilities are extended to convennonal debugging environments in a
transparent manner.

* Information required for performance analysis can be gathered.
» Debugging is still possible when source code is unavailable.

» Debugging information is maintained in a separate address space, where it cannot
be modified by the program being debugged.

There are two styles of execution replay, which are distinguished by a logical or physical
view of time. The use of logical time was pioneered in Instani Replay [7). This system is
based entirely on the order of events. Its recording phase captures the order of operations
on shared resources. The same ordering is then enforced during subsequent replays of the
execution. Since timestamps are nut used, replay fidelity is independent of system clock
precision. Such accurate replay is itself a valuable debugging tool. Having witnessed
and captured erroneous behavior, a programmer may often be able to verify cocs
corrections by subjecting them to the same conditions that previously elicited an error.
However, this is not always possible. If an error directly involves the order of operations
on a shared resource, a correction invalidates the captured history, and replay is not
possible.



A sharply contrasting style of replay based on physical time was introduced with BugNet
[8). This system timestamps the messages of each process as they arrive during the
recording phase. Replay is effected by delivering each message at approximately the
same time as in the recorded rur  BugNet's reliance on physical timestamps constrains
its replay fidelity to system clock precision. However, replay is centered on external
message events and is independent ¢. intraprocess event order. Consequently, it is
possible to verify any correction that does not affect external message events.

PARADIGM supports replay based on logical time. Unlike Instant Replay however,
each event in the underlying partial order diagrams [28] includes a timestamp. The result
is a timestamped partial order. Originally included to support physical time-based replay,
these tirestamps now appear to be morc useful for performance analysis. This is
discussed in section 4.4.

msg_id = irecv(3, buffer, BUF_SIZE):
for (1 = 0; 1 < 1000; i++)
if (msgdone(msg_id))
break;
else
do_work(i);
if (1 >= 1000)
msgwait (msg_id);

Figure 1. Erronecous Program Fragment

Consider the program fragment in figure 1. On the Intel iPSC/2 multicomputer, irecv (),
mscdone (), and msgwait () are all communication-related system calls. The irecv () in
the first line requests that a message of type 3 be placed in butfer. 1recv () does not
await the acrival of an appropriate message. Instead, it returns a handle that may be used
later tu dctermine the receive status or to await message delivery. This handle is passed
to the msgdone () call within the for loop. If a message of type 3 has arrived, msgdone ()
returns 1, indicating that the receive is complete. Untl that time, however, msgdone ()
returns 0. Should the loop be exhausted before the message is delivered, msgwait ()
suspends execution pending its arrival.

The timestamped partial order for this fragment is shown in figure 2. In this simplified
diagram, the single timeline represents the history of events for the node on which the
iragment was active. Events occurring prior to the fragment's invocation are not shown.
Here event 100 corresponds to the i rec () system call. Further along, the incoming arc
represents an arrivirg message. As with the i recv () event, the arrival is imestamped.
The identity of the originating node is also recorded. (In reality, the arrival information is



stored in the record for event 100. It is shown separately here to highlight the message
arrival’s temporal relation to program events.) The final event shown is numbered 620
and represents a successful msgdone () call. Between this event and the i recv () are 519
intervening and unrecorded events. These correspond to the msgdone () events that could
not succeed until the arrival of the message at time 1:08. As explained below, these
events need not be recorded. Replay requires the capture of only those events that
involve communication. Also not recorded are message contents, as these are
regenerated by the replayed program.

Node 2
1:00 1:08 1:10
-— S -
100 620

Figure 2. Timestamped Partial Order for Erroneous Program Fragment

Imagine that the program fragment in figure 1 produces incorrect results when

do_work () is executed more than 500 times. The error is dependent on the relative
speeds between the process that contains the fragment and the process that supplies ti.e
message. Consequently, the problem only occurs intermittently. Furthermore, it may
rever manifest itself if a traditional debugger is used to study the fragment’s process in
isolation. In this case, monitoring activity may slow the process, causing the message to
arrive much earlier in its execution.

PARADIGM's execution replay facilities ensure that any errors, including races, are
preserved. N9 special action need be taken until an error occurs. At that time, a
timestamped partial order is recovered using the replay system. The behavior can then be
reproduced by comparing communication events in the re-executed program against those
in the timestamped partial order. When the irecv () is re-executed, the replay system
can determine that node 2's message is to be received. Should a message from a different
node arrive earlier, it is ignored. The next 519 events are unrecorded msgdone () calls.
By their absence, the replay system infers that these reproduced events must fail
regardless of the arrival of node 2's message. At the 520th msgdone () event, the call is
allowed 1o succeed. If the expected message has not yet been received, execution is
suspended pending amival.

Because replay is not dependent on timestamps, PARADIGM provides accurate replay
even when high precision system clocks are unavailable. Imagine that the programmer
replays the erroneous execution within a conventional debugging environment. After
determining the cause of the error, he decides to modify do_work () and recompiles his
progrem. The new executable may be tested using the replay system and the original
timestamped partial order. If the error has not been corrected, it will manifest itseld again.




A problem occurs when the changes to be made affect the order of communication
events. For example, imagine that the programmer corrects the fragment in figure 1 by
limiting the for loop to 500 iterations. This modification also reduces the number of
msgdone () events and, hence, invalidates the event sequence recorded in the
timestamped partial ordering. When the replay system detects such a deviation from the
recorded partial ordering, it will disable monitoring and return ‘o the recording phase.
Debugging can be subsequently resumed from the newly recorded branch of the modified
execution.

3. BEHAVIORAL ABSTRACTION

Execution replay helps a programmer cope with complexity in two ways. First, it allows
intermitient evrors to be examined interactively, and this enables the user to better focus
his attention. He may single-step, breakpoint, or even alter execution. Second, it
provides a simplified representation of program behavior, being based on the event
model. This is not sufficient, however, as even a sequential program can generate
thousands of events per second. Although a monitor can assimilate such quantities of
information, it is unlikely that a user can. Parallelism only magnifies the problem. One
solution is to allow the user to filter out all but the events he is interested in. This can still
be an unmanageable volume of events, however, and the relationship between events can
be unclear.

PARADIGM's analysis capabilities wiil be provided by node-resident monitor agents.
By themselves, behavioral abstraction systems [14~23] do not address the probe effect or
errors arising from nondeterminism. In our system, however, the event interface converts
reproduced program actions into a stream of primitive events. These are provided to the
monitor agents, where they are compared against patterns in rules. This comparison may
result in abstract events which describe higher level behaviors. Abstract events can, in
turmn, be combined, and may represent activities across processors.

Behavioral abstraction plays four major roles in PARADIGM. Its first role is to enable
automated reasoning about program behavior. This capability is needed in order to
identify meaningful occurrences and trends trom the great volume of events posted by
parallel programs. The second role is to control program behavior either manually or
based on this analysis. Having control over a progrumm's behavior will enable the user to
enforce specific event orderings, alter communication patterns, or take whatever other
actions are necessary to isolate an error. The third mle involves direct querying of the
debugging environment by the user. Debugging is a creative activity, and will often
require the full faculties and intuition of the programmer. These can best be brought to
bear through an integrated query facility that allows the progranumer to test assertions
about a program’s execution and to draw his own conclusions. The fourth and final role
is to drive the user interface. Graphic displays enable the programmer to rapidly obtain
an overall understanding of global state and to identify particular program components
which are suspect



Conclusions

- Debugger should be part of a integrated environment
that provides a variety of views into a program

- A view of the program for controlling the execution
with break-points, checkpoints, or other means

- A view of the source code that supports debugging
along with editing and compilation

- A view of memory that supports annotated displays,
symbolic browsing, and system information

« A view of files in use that shows both status and
contents including any buffers

« A view of program calling sequence with parameters
by name and value

- A view of inter-task relationships for parallellzed
code - timing, status, events, locks, semaphon;‘s, etc.

« A view of generated Icw level code for corresponding
high level source




Conclusions - Specific Features

. Integration with standard compilers and editors

» Debugger should support full syntax used in a program
including pre-processor directives and intrinsic functions

- Symbolic information with all compilations as the default
-all levels of optimization
- Fast response time and easy to use

- Debugger should work for running programs, core dumps, and
checkpoints

- Fast conditional break-points and memory watch break-points
- Bounds checking for arrays

- A symbolically annotated window into mernory with
selectable formats and symbolic searching

- A display of memory layout - a memory map
- Tracing of selected code segments




. Code splicing - a way to insert new code into a running
program

. For parallel processing:
- per processor windows and break-points

- memory reference trace for shared variables
«complex queries of parallel variables or arrays
-message passing traces for distributed memories
- graphical displays of events across all processors
-reliable real-time clock




bdb: A library approach to writing a
new debugger

Benjamin Young, Cray Computer Corporation
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Abstract

bdb is a new source level debugger being developed by Cray Computer
Corporation. Work has been underway since May, 1990 and it was officially
released to customers in October of 1991,

To accomplish our design goals and to simplify implementation, we chose a
library approach to the debugger design. We split debugger functionality into
several different areas (many of which were common areas for other tools). For
cach area we designated a new library to be written or used existing libraries
from other sources where possible.

The end result of this design technique is a very modular debugger which has
been or can be extended to multi-tasking debugging, distributed debugging,
process monitoring, symbol table debugging, dump debugging, and many
other useful tools.

Cray Computer Corporation 1
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Preface

This is a work in progress paper about a new debugger named bdb being
designed and developed by Cray Compuier Corporation (CCC). Although
there is much work still 10 do on bdb, it has been used internally at CCC since
November of 1990 and was first released to customers in October of 1991.

bdb is a source level debugger designed to debug both C and Fortran user code.
It is able to functionally debug single and multiple processes as well as single
and multi-tasked applications. It currently supports three user interfaces (a
dbx-like line mode, an X Window system Athena Widget mode, and an
OSF/Motif mode) with a forth user interface currently being tested internally
(OPEN LOOK mode).

Initial bdb design goals

When work started on bdb, we had several design goals in mind. These
included:

Full symbolic capability for Fortran and C.

Ability to debug multiple independent processes.

Ability to debug macro/micro tasked processes.

Ability to connect to several different user interfaces.

Ability to rapidly prototype new user interfaces.

Ability to share debugger data with external processes (intended mainly for
data visualization).

Ability to debug distributed processes.
® Ability to debug optimized C and Fortran code once the symbol tables
supported it.

Functional decomposition for bdb

To support these goals and to allow for incremental development for each
design goal, we identified five main areas of debugger functionality that should
be split out of the debugger into their own library or set of libraries. These were
the areas of symbolics, data displays, process control, user interface, and
distributed communications.

For the area of symbolics, a new library (lihsym) was developed that provides

a simple (or at least a *more" simple) interface to the loader and compiler
generated symbol tables.

Cray Computer Corporstion 2



Symbolic Library (libsym) bdb

A new library named libdis was created to handle all data displays needed by
the debugger. These included disassembly displays, symbolic displays (where
data is formatted via a symbolic type definition), and dump displays.

The process control library (libbdb) provided the interface betweer the
debugger and the processes being debugged. All communication between bdb
and debugged processes occurs via this library.

The user interface required several libraries. The lowest level library was the
Tcl library (libtel) that provided a consistent low level, string based, interface
to the debugger. On top of that was built the windowing library (libwatson)
that provided the windowing capabilities needed by the debugger.

The final library (libdoyle) is for distributed communications. This library is
still under development. Its function is to provide a simple Tcl based
programming interface between the application (in this case, bdab) and other
systems on the network and it is integrated with the window system central
loop.

Symbolic Library (libsym)

The purpose of libsym was to provide a standard interface for application
programmers to use to access the symbol tables generated by our compilers
and loader.

When libsym was developed, there were two main design goals in mind. The
first was that the library should be at a high enough level to hide most of the
symbolic formats used in the symbol tables. The second was that libsym
should be at a low enough level as to not hide any of the information available
from the symbol tables.

The abstraction that the library lays over the symbol tables involves breaking
up the tables into sets cf modules (one module for the loader tables and one
module for cach compilation unit and common block). Within each module,
the library associates a number of variable definitions, type definitions, line
definitions, and scope definitions.

Structure pointers are used to pass information to and from the library. These
structures also hold all “static”’ information needed ."bout the symbol tables
thus freeing the library from requiring any static storage. This allows the
library to easily handle any number of symbol tables from any number of
binaries, all within a single program,

Crey Computer Corporation 3
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GTNJ0016

When a user first initializes a binary’s symbol tables, the library will return to
the user the number of modules contained within the tables. The user can then
query the library for information about each individual module by number. For
example, a user could request information about module “1”*, module “2", up
to module “n”, the number of modules in the tables. The module information
returned includes the number of variable, type, scope, and line definitions that
are included within the module. From this, ihe user is able to get information
about individual variables, types, scopes, or lines by number. For example, a
user could request information about variable “1”, variable *“2", up to variable
“n”, (n boing the number of variable definitions in the module).

As a short cut, much of the information from libsym could also be referenced
by name as well as by index. For example, a user can ask for a variable by
name, and have the library perform the name comparisons, returning a variable
definition only if the name is found.

As our symbol table formats change (to eventually include symbolics for
optimizations), the structures used to pass information between the user and
libsym will grow to include the new information, but the base information will
remain the same to provide backward compatibility for the library users.

Display Library (libdis)

The display library (libdis) was designed to produce all data displays needed
by bdb. It can produce disassembly displays, dump displays, and symbolic
displays.

To use libdis, the user selects the type of display needed (disassembly, dump,
or symbolic), passes in a pointer to the data to be displayed, passes in a
symbolic type definition of the data (generated by libsym) if a symbolic
display is requested, and passes in any additional formatting overrides needed.
libdis will then return to the user a char pointer that points to a formatted
suring.

Process Control Library ('Ibbdb)

The process control library (libbdb) provides a simple interface to controlling
a process and reading or writing a process’ memory and register space.

Using libbdb a user can:

®  Attach to a process

® Stop a process

Cray Computer Corporation - 4
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Restart a process

Read or write its memory space

Read or write its registers

Send signals to the process

Stop a process just prior to it receiving selected signals
Stop the process on exec

Stop the process on entry to a system call

Stop the process on exit from a system call

Read system level process structures

To perform any actions on a process, the user must first “open” the process via
libbdb. Processes are identified using the system process id (pid) number.
libbdb will allow any number of “opened” processes and the user identifies the
process of interest via the pid number.

Once the user is finished with a process, the user then “closes” the process via
libbdb.

User Interface Libraries

Although several libraries were developed to suppor: the object style
programming needed to support graphic user interfaces, bdb depends on one
key library, libtcl.

libtcl was developed by Professor John Ousterhout of the University of
California at Berkeley. Tcl (which stands for Tool Command Language)
provides the low level interface to bdb. Tcl is, in many ways, a string
manipulating programming language. It is an interpreted language that can be
run by typing in individual Tcl commands at a terminal or can be run from files
containing Tcl programs (we call them Tcl scripts).

There were many advantages to using Tcl as the low level interface to bdb. As
a start, Tcl provided the fullowing language features to the bdb interface:

® Global and local variables

Armays

Callable procedures (with parameters)

For loop constructs

If-Then-Else constructs

Formatted output

User defined language extensions

Cray Computer Corparstion 5



A Debugging Programming Language bdb

Of the above features, bdb makes heavy use of the user define language
extensions available in Tcl. The set of low level bdb commands are defined as
extensions to the Tcl language. As new features and commands are added to
bdb, they are in turn added to the bdb version of Tcl.

A Debugging Programming Langusage

In many ways, users can view bdb as a debugging programming language with
which users can write interpreted programs. By creating the bdb extensions to
the Tcl, the user is really dealing with a superset of the Tcl language. When the
user is running bdb in line mode, the user is simply typing in Tcl commands to
a Tcl interpreter which is started when bdb is invoked. The user could just as
casily write Tcl scripts (programs) and invoke the scripts while running bdb to
control the behavior of their debugging session.

To develop the window interface for bdb, we added a new library (libwatson)
to bdb. libwatson, much like bdb, added several extensions to the Tcl language
that would allow the user to create and manipulate several different rypes of
windows. Once the libwatson extensions were added to Tcl, the window
interface was created by writing a set of Tcl scripts that would create the
windows and drive bdb.

libwatson was developed to support several different windowing look and
feels that include Athena Widgets, OSF/Motif, and OPEN LOOK. The
multiple window support was developed in such a manner as to make the look
and feel styles transparent to bdb and the Tcl scripts that run it. The only
changes needed in bdb to support OSF/Motif instead of Athena Widgets is to
link in the X Window OSF/Motif library instead of the X Window Athena
Widgets library. There are no code changes needed in either bdb or the Tcl
scripts. All differences are hidden from bdb and Tcl by libwatson.

STN30O016
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Figure 1 bdb OSF/MOTIF Windows
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Putting It all Together

In many ways, bdb is a driver program that drives the above mentioned
libraries. To give an example of how *he libraries work together, the following
steps illustrate what bdb does when the user asks bdb to display the value of a
variable.
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User types “print foo".

The bdb Tcl interpreter evaluates the command and calls appropriate low
level bdb routine, passing in the string “foo” as the paramneter.

bdb calls the symbolic library (libsym) to look up the variable named
I(fmll.

libsym returns the symbolic definition of foo along with its address and bit
size.

bdb calls the process control library (libbdb) requesting a read from the
address returned by libsym.

libbdb returns a data pointer that holds the value of “foo™.

bdb calls the display library (libdis) passing to it the symbolic definition
returned by libsym and the data pointer returned by libbdb.

libdis returns to bdh a formatted string that includes the symbolic
definition and the formaited value of “foo”.

bdb returns the string to Tcl which in turn displays it to the user.

Other Tools

Many other tools at Cray Computer Corporation have been created or
enhanced using the libraries initially targeted for bdb. These include:

stb - A graphic symbol table browser.

dasm - A symbolic disassembler.

sim - A hardware simulator used to debug operating system code.
holmes - A graphic Tcl environment.

nflow - A graphic post processor for evaluating process flow and timing.

vsm - Visual System Monitor used to monitor system operations and
individual processes.

symdiag - An internal symbol table diagnostic.
va - Visual Administrator for system configuration.

STN30018
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Introduction:

The ability to debug and validate computer software is an essential part of the
development process. This becomes increasingly difficult as the complexity of
algorithms and supercomputer hardware ‘ncrease, requiring more sophisticated
tools. Te address this need C Division embarked upon a project to write a new
debugger for use on Los Alamos supercomputers.

The Los Alamos Debugger (1db) is targeted to meet the needs of large scale scientific
code developers. To that end, ldb supports debugging computationally intensive
fortran programs on production supercomputers, with minimal impact upon
performance, taking full advantage of advanced capablilitics provided by the
UNICOS operating system running on Cray Research hardware. To support
emerging technology, such as the Connection Machine, Idb Is designed to be
portable to other supercomputer platforms .

Los Alamos has considerable experience enhancing and using debuggers on
supercomputers. In order to leverage off this expericnce and provide a familiar vser
interface, Idb design philosophy and command syntax is based upon the ddt
debugger which has been for many years the primary production debugger under
the CTSS operating system on Cray supercomputers. The migration from CTSS to
UNICOS provided an opportunity to develop a debugger which would exploit unix
features and expand upon the ddt base by incorporating modern debugger
technology. An advantage of this approach Is that usecrs migrating to UNICOS are
immediately productive with Idb thereby accelerating the migration effort by
providing a means to quickly Isolate bugs arising from porting codes. Advanced
dcbugger capabilities are introduced Incrementally and in an upward compatible
way on top of this famlliar base.



Current Production Debugger:

Ldb is running in production on all Los Alamos Crays running UNICOS, and
includes the traditional debugger functionality of the CTSS debugger ddt, such as
the ability to control process execution by setting breakpoints in the user code, save
and restore capabllity, symbolic access to process variables, macro capability
including debugger variables and flow control of ldb commands, the ability to
"'patch” a process, and calculator style expression evaluation. Ldb expands upon
this base In many areas.

A significant enhancement, is the ablility to set more complex conditional
breakpoints, while retaining the low overhead required to process the condition . A
code running under debugger control can he instrumented to stop at a code location
when a condition is met. Under Idb, this condition Is processed in the user code by
re-routing executlon flow to evaluate the condition during cxccution. Traditional
unix debuggers (dbx) evaluate the condition In the debugger which can cause a code
to run 20,000 times slower and effectively eliminate the conditional breakpoint
capability for computationally Intensive codes. The ldb implementation supports
much more complicated conditions than its predecessor, ddt.

A powerful new feature of idb Is software watchpoints. Watchpoints allow a uscr
to stop his code when a particular condition is met regardless of the code location.
This is an improvement upon conditional breakpolnts which cvaluate the condition
only at a specific code location, but requires more overhead to process. The
watchpoint capabllity can be of great use to the code developer in locating the root
cause of data corruption

For users with the necessary terminal hardware and software, ldb provides a
graphical uscr interface us g X-windows which facilitates source-level debugging
and providis a natural intr ‘ace to debugger capabilitics.

Ldb has the ability to plpe formatted data from the process under debugger control
to another unix process. This opens the door for any type of data analysis to be
done during the debugging sesslon, such as visualization.

An Interesting new capabllity which interfaces (o Idb is suditory data analysis. The
user pipes data from the process being debugged to a workstation with sound
capabilities which ''plays back' the data. The user can then "hear' his data
recognizing anomalics over a large range of data. Visualization and traditional
debugging analysis can then he used to home- in on the problem arca.

Version 2.0, scheduled for release second quarter 1992, will include a first cut ot
dcbhugging support for shared memory parallel codcs.
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Design Goals

fortran

large-scale scientific codes

familiar look and feel

multi-level debugging

unobtrusive

minimize impact upon program performance
portable

flexible

facilitate migration from CTSS to UNICOS
all features available from ""dumb'' terminals

exploit unix features



Significant Features

output piping (visualization and sound)
software watchpoints

conditional breakpoints

execution tracing

multi-level debugging

formatted prints

macros

symbol table browsing

attaching to a running process

graphical user interface via x-windows
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3] sheikesl - /8in/csh

[mttrlr‘ debug mode ...
ing commas.de in .ldbinit file ...

process
. TESTY watch labels for k .eq. 10
i TESTY run
instrusent ing code for watchpointing ...... done
in the userpo-t routine
in the userport routfne
In the uvserport routine
in the uvssrport routine
in the usevport routine
1n the vserport routine
in the userport ruutice
in the sserport routine
in the userport routine
watchpoint comdition met
mur*m-m-tmw 436pc = 34 @ TEST()
b 2 4
XK =10
T.ST> rtr

00000436pc = 34 @ TEST()
returns to 00000274pb = SSTARTS() + 41pb

TEST> list souwrce
a{1) =b()) #c(1) ¢+ 1 ¢+ 1]

—

88 <] cont inue
I $10
i $108 10 contimse
: k=k+1
\ pa(1) = 23.0
I =)34 call sub(100)
: 1) =
1f (J .1t. 0) then
L7, N d(llll):lllllo
else
kB N1.2.3.4.5) = 12345.0
: H5.4.3.2.1) = k
P ) 8 el §
' pa2) = 123.45
. 4L call sub2(a.b.c.d.maxi.ch.10.10.5.6.7)
: pal1) =
i goto S5
| stop
end
| TEST) $108:341
i $100 @ TEST() = ]
00000434pa: 042 6 7 7 S6 1
00000434ph: 074 7 00 S7 T00
] 00000434pc: OG0 7 7 6 S? 57456
00000434pd: 130 7 OC 11113200001 00000244455.0 S7 K @ TEST()
i\  O0D0D4¥pc: 074 6 O1 Sb TO1
; 00000435pd: 131 6 00 000 Al Sh
i 34 @ TEST() = |
{ 00000436pc: G20 6 00 00101600001 Ab 00000200407

e——— —
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CWiNS
§88
020
BLIRY
B
o

in the userport routine
user process topped at program counter: 330pd = $5 @ TEST()

i
| TEST> K
! K = 20
i TEST> cdbx$oruds N20
00052450pa: 130 O OG 0143440000t 00000206162.0 SO
‘ 00052450pd: 130 1 00 01434600001 00000206163.0 S1
00052451pc: 130 2 00 01435000001 00000206164.0 52
! 00052452pb: 130 3 00 01435200001 00000206165.0 23
I 00052453pa: 110 0 00 01435470001 00000206166.0 A
00052453pd: 051 1 O 1 s1 S1
00052454pa: 043 1 0 0 S1 0
; 00052454pb: 120 2 00 11112600001 S2 00000244453.0 K @ TEST()
00052455pa: 040 3 00 000CS000000 53 00000000024
| 00052455pd: 046 0 3 2 S0 S3\52
. 00092456pa: 15 000252273 JSN 00052 456pd cdbxScrui) + tipd
i ODCA2456pc: 047 1 0 1 s1 »51
' O00%2456pd: 044 4 4 4 S4 54854
|  OD0D52457pa: 120 2 0D 01435000001 52 00000206164, 0
i 00052457pd: 120 3 00 01435200001 s3 00000206165.0
{  00052460pc: 100 O 00 01435400001 A0 00000206166, 0
:  00052461pb: 051 0 0 1 S0 S
00052461p-: 120 1 00 01434600001 S1 000002GH163.0
O00S2462pb: 014 000252317 Jsz 00052463pd cdbxscnd() + iSpd
. 00052462pd: 120 O JO 01434400001 S0 00000206162, 0 .
! TEST> roll 5
i 00052463pc: 000 00 ERR
! 00052463pd: 120 O 00 01434400001 S0 00000206162, 0
00052464pc: 049 7 00 00175000000 57 00000000764
|  00052465pb: OC5 000001562 J 00000334pc $S P TEST() + 3pa
| OD0S2465pd: 051 1 0 1 51 s1

TEST) list vars

i Local Variables in Subroutine: TEST (Sorted by Mame)

;. wariable type wmenory allocation address length
H character static 200247 5 characters
110.10.5.6.7) real static 244461b 21000 words
1 integer static 244460b 1 word
K Integer static 244453 1 word
PI real static 200250b 1 word

TEST []

X
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shelitosl - /bin/csh

70T CY

- MM ss
i T | I Y

180 bb(2) = 15.0
1R cc(1) = 15.0
20L cc(2) = 15.0
21L abc(-1) = -1
A k=0

23 p = loc(b)

S

24 5 cont lrue

s B do 10 1=1_maxi
260 a(1) = log(1.091) + tan(1.0m}1)
2N

$10 10 continue

26 k-k+1

2 pa(1) = 23.0
3 call =ash(100)

TEST> bip 310 if 1 .ge. 15 .and. 1 .le. 20.281
TIST) sdefinelprintal) {(printf ~“a{Xd)=Xf\n" 1.a(1)}
TESTY link $10 to ““printal:r.n”

TEST> l.st

Breakpoints (Sorted by Addvecs)

0C00000401pc = $10 (cond.tional: 1 .ge. 15 .and.
COO0000-407na = B
000005311 /pa = cdbx$crnd  (instrusentation)
0000057157pa = SUSYMSG  (unsatisfied extermnals)
ONO0104250pa = Sexit (exit point)
0000112032pb = CRAY2IBM (instrewmentation)
000011323pb = IBCTRAY  (lnstrumentatlion)
00001155%pb = CRAY2IEG (Instrumentation)
0000117356ph = 1EG2CRAY (instrumentation)
00001365300h = [(RAYZWI (instiumentation)
000013773Anh = WOOTRAY (instrumentation)
TESTY> run
user process stopped at program counter: 40lpc =
a(15)-1.652057
user process stopped at program counte~: 40lpc =
2H{16)-3.073221

user process stopped at program conter: 40ipc -
a(17)=6.327129

user process stopped at program counter: 401pc =
a(18)=1_753058

user process stopped at program counter: 40lpc =
a(19)-3.096028

USeT Process
a(0)=5.232893

user process stopped at program counter: 40/pa =
IEST> Slist{printall}
prainta) =

printf “a(Xd)=X\n" 1_a(1)

stopped at program conter: 401pc =

| TESTY ]
L —

1 .le. 20)

s10 @
sio @
$10 @
$ . @
s$10 P
$10 @
A e

1EST()
TEST()
TEST()
TEST()
TEST()
TEST()
TEST()

(11nked to: printal:run)




oo mem. m
[c— ] Pt .
W XYD  amiteel Januar calcul Consol /bin/c /bin/c 1 l—laa
Thy Jan 30
fﬁ shp | xgr;ph
" TEST> a\10 [Cbst][Hldu:py"PbomJ ” Graph

00000245151b: a(l) to a(20) = .000000e+00

' TEST> end
1 killing user process
L /asr/tap/jxyb/1db% 1db1.2 test/test77ez.x

5 ldb version 1.2
built: 01/30/92 at 10:27:09

| attached to absolute file: /usr/tmp/1d52347.. p
entering debug mode ...
| processing commands in .1ldbinit file ...
- TEST> sh "=d test”
ldb working directory .. w: /usr/tmp/jxyb/1db/{
TEST> list source
: program test
paramcter (maxi=100)
real a(100),pi
; common/xx/a
| data pi/3.14159265/

Y

0.00 2000

40.00 60.00 60 00 100 00

i TEST()

-~ $10A do 10 i=1,100 !

1 5103 10 aéi) = sin{((2.0%pi)/100)*i
continone

.‘[ 9L call sub()

! stop

' end

' PEST> run to 91

. TEST> a\l0
00000245151b: a(l)

’ 00000245155b: a(5)

| 00000245161b: a(9)

i TEST> integer ii

| TEST> output | "xgraph”

" TEST> do 1ii=1 maxi

. do: pr:lnt’ “%d Sf\n" 1i1i,a(ii)

' do: enddc

ITESD output tty

TES™ |[]

user process stopped at program counter: 343pa =

6.279052¢e—-02 1.253332e-01 1.873813e-01
3.090170e-01 3.681246e-01 4.257793e-01
5.358268e-01 5.877853e-01

)

$10B @ TEST()

2.486899e-01
4.817537e-01

L




shelltool - /bin/csh

r s

() 19bx
’ subroutine subz(a.b,c.d.maxl ch.r a,i k. T) 1 end
coemn/xx/p —)
conmon/xxxxx/x,3 -
real a1 ~1:ind.b(}).cC100).dta.n.i k. 1) el
real auto(maxi
character ch(9) M
pointer (p.pa)
= 8L dir)
| 5]
SuB2() 5 continue drr
9L c(1) = 2.0 "—)
10t pa = 1.0 Lput mode ¢
C print ®.pa
121 p = loc(O)
C print *.pa Jistr)
141 a(5,6) = 565.0
158 b(E) = 666.0 Jdoc)
16L c(7) = ?772.0
171 auto(wax1) = <(7) o t mode r
180 a(6,1) = auto(waxi)/b(6)
< (7} = 5.0/a(1,-1) int
C goto 5
2L return
22t end relr)
restore r)
rollr)
rtr)
Junr)
save ~
| saver)
[SuBZ> roll 1 7 set...
mn?ﬁhﬁpc: 136 7 00000023 00000023,A6 S7
sug2» roll 1 sub
000Z6146pa: 042 § 7 7 3 1 Sbr)
suB2> roll 1 t
00GZ6146pb: 061 S 7 6 5 57-S6 userport. ..
SUBZ> roll 1
00026146pc: 060 7 S 6 S7 55+SE
syg2> roll 1
00026146pd: 135 7 00000024 00000024,A6 S7
SUB2> run Lo SUBZ
user process stoppe? at program counter: 26426pd = 35 @ SUB2()
SUB2Z> rtr
00026426pd = list source *-100:=+100
35 @ suB2()
returns to 0N026112pc - 8L & SUA() - 6pa
returns to 0NN25643p3 = 35L @ TEST() - 6pa
returns to 00025454pd = §STARTY() « 3I3pd -
Ste2> _
SUg2 e ]
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lnﬂveumi
in the userport

in
in
in
in
in
in
in
mn
in
in
in
in
in
in
in
in
in

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
1n
in
in
in
in
in
in
in
in
in
n
1n
n
in
in
1n
K1ll
rl D
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userport

userport

routine
routine
routine
routine
routine
routine
routine
routlne
routine
routine
routine
routine
routine
rout lne
routline
rout ine
routine
routine
routine
rauting
routine
rout ine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
roctine
routine
routine
routine
routine
routine
routine
rout ine
~ e
r_.cine
rout ine
routine
routine
routine
routine
routlne
routlne
routine

shelttoel - /bin/csh

Al | shelkoel - /bin/csh

[ 39650] 0.260d (PU= 0.0010+ 0.,00853 p001:inquiry RUNNING on CPY 1
rX ldb -p 39998 test//ez.x

1db version 1.2
bulit: 11710791 at 16:53:04

attached to runmning process: /proc/39598

entering debug mode ...
processing commands in ,ldbinit file ..,

TEST) loc reg(pc)
10

= write() + 6pd

TEST> i

141576pb = XTANX() + 24pa
TESTY> 1

10 = write() + 6pd
TEST> 11

1039566pd = write() + 6pd
TEST) bkp $5
TEST) run

user process ttopped at program counter: 333pd = $5 @ TEST()
TEST> run

user process stopped at program counter: 333pd = $5 @ TEST()
TESTY k

K = 20856
TEST) run

user process stopped at program counter: 333pd = $5 @ TEST()
TEST) k

K = 2085/
TEST> vun

user process stopped at program counter: 333pd = $5 @ TEST()
TEST> k

K = 20850
TEST) end kill

killing user process ...
&[]




Future Directions

. port to other unix platforms

. Connection Machine support

. component of decoupled I/O

. research into debugging parallel codes
. distributed debugging

. support for other languages

. support for other user interfaces

. debugging optimized code



The Auditorialization of A Running Code

Cheryl L. Wampler and Robert S. Hotchkiss
Los Alamos Naticnal Laboratory

Abstract

investigations of the use of sound as & medium of feedback from an
axecuting code have been initiated. The primitive vanables that are the
foundation of sound can be used lo encrypt a large amount of
information. We have found thai sound can be used 10 successfully
convey simpie functions and data. N is possile 1o use sound for code

debugging and for transmitting the output of code. We present the
sound of an exacuting code, the sound of errors, and the sounds of
arrays.

Introduction

The purpose of this research is to broaden our approach to computer
programming by incorporating the use of sound as another avenue of feedback
from machine to man. Until now, this iaedback has generally taken the form of
written messages, usually cryptic, and often misleading. Code debugging has
traditionally been performed by stopping a running code at given breakpoints,
and inspecting the status of the variables on a line by line basis. While th:3
method has proven very useful, it is often difficult to localize subtle errors in huge
codes. We propose that sound can provide a natural medium for the offioading
of data from visual channels when needed, and can at times convey an
understanding of processes that cannot be easily gained through visualization.
Furthermore, the simultanecus perception of visual and auditory information can
have a synergistic effect of the brain’s ability to comprehend an event.

Our research has had the followirig immediate objectives:

1. to demonstrate, through simple and understandable
means, the viability of using sound as a medium for
feedback from a running code or from the data being
manipulated in the code,;

2. 10 develop basic software for translating data into
sound;

3. to simultaneously lay the foundation for a more
extensive user interface in the supercomputing

1



environment, and a functional interface into a
supercomputing debugger;

4. to investigate the relations between various musical
structures and typical code structures;

5. to couple visual and auditory communications from
machine to man.

The Parameters of Sound

Because of the variety of parameters inherent In sound, it can easily lend
itself to multidimensionality and thus provides a good medium for data
interpretation. The most fundamental sound parameters that can be used as
precise variables are frequency, amplitude, and time. There are other variables
that span the domain of sound, such as timbre or tone quality, reverberation,
brightness, etc. We have chosen to defer investigating some sound parameters,
such as reverberation or brightness, because of the ambiguity in the terminology
and our inability to aurally distinguish them with precision. There are an infinite
number of ways in which the sound parameters could be applied to the variables
of an event. The challenge for incorporating them into computer code that
approaches being flexible enough to accomodate this great variety is the logic
that must be written into the software.

Software

Our purpose for developing the software involved in this project was thieefold:

1) to test the viability of manipulating the fundamental
parameters of sound to represent data,

2) to provide groundwork for a more extensive, user-
interactive audio/visual system for the supercomputing
environment, and

3) to provide a useable sound interface into a mainframe
debugger.

We have developed one basic set of sound software using a portable C
compller. For this phase of the project, a Yamaha SY77 electronic synthesizer
and a NeXT with a DSP were utilized for the actual sound synthesis. The NeXT
MusicKit software provided the conversion of sound-producing instructions into
MIDI format or into a format acceptable to the DSP. A small library of functions

L



have been developed to operate at execute time upon virtually arbitrary
collections of data. This enables one to perform operations on scientific data,
graphical data, or sound data through an interface as the code executes. This
“evaluator® is capable of the normal mathematical library functions similar to a
scientific calculator but allows a vector type (i.e., vector addition, multiplication,
summing a vector and scalar, etc.). It is capable of permitting the user to write
and invoke functions at execute time. It also allows the invocation of compiled
functions as desired. The evaluator is dictionary driven to provide a fiexible
communication link between the user and itself for a specification of the means
by which one intends to use the compiied primitive functions. Thus, sets of
numerical data can either be generated within the program, or read in from
outside files, manipulated by means of vector processes In a variety of ways, and
converted into sound according to the user's specifications.

There will also be an option to run the code in a mode which will map a single
set of data into frequency, setting default values for all other sound parameters.
This mode will be used to provide quick sound °‘snapshots® of data being
produced by processes such as, for example, an executing debugger.

We have discovered that audiblized data can create sounds that no man has
ever heard before and truly excites even the non-musical mind. Humans have
been so accustomed to looking at graphs of functions that a great richness of
understanding has been sorely overiooked.

implementing Sound in Supercomputing Environments

Supercomputers in the Cray XMP/YMP class of vector processors and
massively parallel processors, such as Thinking Machines Inc. CM-2, are the
only current tynes of machines capable of handling the transmission rates
discussed above. If graphics and sonics are to occur simultaneously, a
substantial engine is obviously necessary. Just to display and auralize data that
have been stored as files requires very high-speed processing and disks capable
of reading data at rates of one gigabit per second or greater. It is possible to
transter information at gigabaud rates from the memory of these machines. For
sound, it Is possible to compute sound files for many applications at the rates
needed for three-dimensional auralization. That i3, if one does not have the
avallablility of DSP processors or music synthesizers, sound must be produced by
computing the 44,100 16-bit samples needed to feed to an amplifier just as a
compact disk does. We have developed software in the portable C language that
iIs machine independent for a wide variety of machines. It does not port to the
CM-2 directly. We have writien code to compute the digital sound data from
Fourier Series. This is a rather siow process on the workstation class of
machines and a much more rapid vector process on Crays. The algorithms have
beon designed so they will map to the CM-2's SIMD (Single Instruction Multiple
Data) architecture. At this early stage of development, we have not sought to
specialize our efforts to any specific machine nor are we likely to. To maintain
extreme portability is and will continue to be an underlying basis of this research.

i



Thus, one code generates sound formatted data on any machine. It vectorizes
when compiled on a Cray thereby producing enommous speedups over
workstations. We are taking the same approach with regard to data that will be
sent to either DSPs or MiDI music synthesizers.

As a result of these approaches, we find that one 1nust rely on the speed of
supercomputers at times, but is also able to do most the development as well as
testing on nearly any workstation.

Sound and Code Debugging

We believe that the use of sound has important implications in code
debugging. In several instances, subtle errors in the code written for this project,
although not obvious to the brain on paper or on screen, became immediately
evident when the results were audibly played. Along these same lines, Nicolas
Metropolis, pioneer of modem computing, reports that antennae connected to the
voltage lines of Maniac electronic computers used at the Los Alamos National
Laboratory in the 1950's provided acoustic feedback from the code as it was
running. Metropolis notes that each code produced a particular cadence, from
which an error or failure could be detected by a breakdown in the acoustic
cadence.[1] On one particular occasion, the exact location of the error in the flow
diagram was pinpointed by noted mathematician Robert Richtmyer on the basis
of the sonic feedback. Current debuggers operate by allowing the user to stop
the code while it Is running and then to inspect its status on a line by line basis.
In a very large code, this type of debugging can not only be tedious and time-
consuming, but can at times be misleading in pointing to the real problem source.
Giving a sound to a code as it iIs running can give a broader picture of the
processes as they occur, and thus could help to localize subtle errors.

At Los Alamos, sound capability has been implemented with a mainframe
code debugger. The current use of this sound in debugging is based on the
breakpoint concept. At the tr- itional breakpoints, the contents of arrays can
either be sent to a graphics package or to the sound package to be given a
perceptual realization.

Our objective is to give a sound representation not only of variables, but also
of the actual execution of any portion ot the code upon demand ot the user. In
order to demonstrate the viability of this idoa, a sound representation was given
to an executing sort code. The sorting function, essentially a quicksort algorithm,
calls itself recursively with successively smaller portions of the original array of
data. The level of recursion and the entry and exit times are recorded for each
call to the sorting function. The times are then mapped into an audible range,
and a tone assigned to each level, to be held for the duration of that call to the
function. in addition, the data, an array of integers, is mapped onto the pitches of
a string of notes (within a two octave range). The state of the data for each call
to the sorting function s played upon entry into, and before exiting out of that
particular call to the function. In this manner, it is possible to hear the



progression of the code through the various levels of recursion, and also to hear
the progressive eftects of the algorithm on the data. This type of sonic feedback
can thus be used to represent the progression oi the code itself or the
manipulations being performed upon the data (or both). Sonic feedback can also
be used to portray the state and/or changes of state of memory. We speculate
that these uses of sound, as well as others yet unthought of, will provide valuable
additions to the current arsenal of tools used to locate subtle and hard-to-find
"bugs” in large codes.

Conclusion

As a result of our research to date, we predict that sound will be a viable
medium for feedback from the machine to man, that multidimensionality can be
clearly delineated with sound and thus that sound has great potential for the
representation of multidimensional data, and that sound will provide an important
additional tool for code debugging and for understanding the processes of a
running code. We would also conclude that further research is necessary
concerning the use of sound in computer debugging.

REFERENCES

(1] Nicolas Metropolis, private communication, Los Alamos, N.M., April 4, 1991.
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PURPOSE OF THIS PROJECT ~

e TO AUDIFY SCIENTIFIC INFORMATION

® TO GIVE MACHINES A VOICE TO COMMUNICATE
e TO SYNERGIZE THE AUDIO-VISUAL

® TO DEVELOP CODE FOR AUDIO-VISUALIZATION
e TO INCREASE THE BANDWIDTH TO THE BRAIN
e INCREASE UNDERSTANDING
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DATA N
% EVALUATOR

. _/

ARRAYS OF FREQUENCIES, AMPLITUDES, DURATIONS

KEY NUMBERS AND PITCH BENDS

FILE

Y

SERIAL PORT TO
MIDI

Y

DSP

F1g 1 Sound production using "Evaluator” from DATA input to sounrd



PARAMETERS OF SOUND

Frequency
Ampilitude
Timing

Duration

Attack - Decay
Timbre

Reverberation

Spatial Position

[Les AEmos .

COMPUTATIONAL PHYSICS




Dynamic Memory Manager Application

[T N ..

O Busy Free [ Non-Movable

Partitioning of a Memory Pool

Sound can be used to study the operation of a mamory
management system. By mapping the spacing of the aliocated
blocks Into a frequency (pltch) range with the lowest and
highest pitches representing the boundaries of the pool, the
current status of the memory pocl can be aurally scanned from
bottom to top. A speclal sound, such as a bell or a drum roll
can signal the location of free or non-movable spaces.

%

1 B N o

Block Movement to Create a Larger fFree Block

Sometimesr, several busy bilocks may boe reasiliocated to new
memory locations to make room for the allocaetion of a block
requiring o larger memory space. [In the event of a fallure In
the memory manager, It caan provs difficult to trace what went
wrong, and to where the blocks have been moved. The
repositioning of these blocks Insid®, or outside, of the memory
pool can be traced with sound.



Code Debugging with Sound

LDB

Debugger
- _J

At Los Alamos, sound capability has been implemented
with a mainframe code debugger. At the traditional
breakpoints, the contents of arrays can be sent to
either a graphics package or to the sound package to be
given a perceptual realization,

Our objective is to give a sound representation not only
of static variables, but also of the actual execution of
any portion of the code upon demand of the user. This
representation could reveal the progressinn of the code
itself, or the manipulations being performed upon the
data (or both). Thus, it will be possible to hear an error
as it actually occurs in the executing code. We speculate
that this will be a valuable too! in locating subtle and
hard-to-find "bugs" in large codes.



VOID QUICKSORT( DATATYPE V, INT LEFT, INT RIGHT, INT LEVEL )

{

REGISTER INT |, J ;
DATATYPE X, Y;
VOID SWAP) ;

++LEVEL ;
| = LEFT ;
J = RIGHT ;

X = Vuerr+mcin.

DO {
WHILE( V, < X && | < RIGHT ) H+ ;
WHILE( X < V, 8&& J > LEFT ) J--;

HI<=J)(
SWAP( V., I, J);
H+; J--;

}

IWHL H I <= J ) ;

I LEFT < J ) QUICKSORT{ V, LEFT, J, LEVEL ) ;
IF{ | < RIGHT ) QUICKSORT( V, |, RIGHT, LEVEL ) ;
—-LEVEL ;

N
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Sound Rendering of an Executing Code

A sound representation was given to an executing sort code. The sorting
function, essentially a quicksort algorithm, calls itself recursively with
successively smaller portions of the original array of data. The level of
recursion and the entry and exit times are recorded for each call to the
sorting function. The times are then mapped into an audible range, and a
tone assigned 1o each level, to be held for the duration of that call to the
function. In addition, the data, an array of integers, is mapped onto the
pitches of a string of notes (within a two octave range). The state of the data
for each call to the sorting function is played upon entry into, and before
exiting out of the function. In this manner, it is possible to hear the
progression of the code through the various levels of recursion, and also to
hear the progressive effects of the algorithm on the data.

LEVEL TIME
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Unlike most of the other talks at the workshop, we consider the problem of
debugging programs on maassively parallel MIMD computers. A debugger for
these architectures faces special problems. First, the ‘window-per-process’ ap-
proach used in most parallel debuggers fails completely, as the user would have
to manipulate 1000 windows. One needs a histogram beside the source code just
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Abstract

The tasks of debugging and performance analysis have traditionally
been separate pursuits, one undertaken at the beginning of development
and the other viewed as a tuning phase after basic algorithmic function
has been verified. Our experience indicates, however, that analysis and
visualization techniques are essential for assuring even basic function for
complex algorithms on massively parallel machines. A proper debugging
environment for these machines shouid have scalabie levels of user inter-
action and data portrayal: it should allow the us~r to function on any
level, from traditional single-processor queries to global visualizations of
performance based on user-specified probe requests.

We are currently implementing a prototype environment allowing in-
tegrated debugging, event trace analysis, and real-time performance vi-
sualization for the NCUBE/2. This paper describes the details and mo-
tivations behind the prototype design. Present and proposed capabilities
are discussed, including a graph-oriented editcr for visualization environ-
ments, the integration of debugging into this editor, and how other data
sources (such as event traces) complement and enhance traditional de-
bugging techniques in this environment. We also discuss the future of the
method, a generalization of the data flow method based upon a graphical
query language for the execution data viewed as a relational database.

Introduction

1This is a very rough draft of a paper lo be submitted ta the Journal of Parallel and
Distributed Computing special issue on visualisation, to be published in 1993, Commenta
and suggestions are welcome; please send them to couch@a.tufis.edu. Apologies in advance

to anyone whose work was unfairly left unreferenced.



to represent the distribution of individual program counters. More important,
printing s variable or value is not possible in .he normal sense. One cannot
efficiently interpret the results of ‘print x’ when there are 1000 x's. Likewise,
distributed arrays are difficult to print and read, both due to their size and the
vaniety of array allocations used.

In this paper, we attack the problem of printing a variable x, by exhibiting a
way to integrate visualization and debugging environments. Unlike debugging,
visualization has always dealt with reducing massive volumes of information
into a compact, easily viewable form. Using visualization, we reduce the data
to graphical attributes and render all values of x in a perusable form. Then, if
the visualization system allows selective re-rendering of subsets of data, we can
freely navigate the data until we find the information we need.

We come to this problem from the visualization perspective. Our first tool,
Seecube(2], was a trace-driven past-moriem execution analyzer. Event traces
collected on all processors were sorted into & global execution order and exeru-
ticn parameters and states were simulated from the trace. Traces were recorded
for communication events by enveloping communication system calls within data
recording versions. We later developed Seeplex[3], a real-time version of Seecube
taking its data directly from a custom operating system for the processing nodes.
Current work involves extending Seeplex to handle debugging as well as visual-
ization.

Others have also developed related visualization environments, though most
are vimed al comparing architectures rather than debugging programs on a
single architecture. Paragraph(6] is a portable re-implementation of Seecube
in X-windows, based on a similar collection of event traces using the PICL(5]
portable communication library. Paragraph adds many new displays to the
original suite provided by Seecube, but very few of the displays are scalable
and nune allow interrogation of actual values from the displays. Pablo[10] is
s visualization system for any kind of event trace, using a graph-based user
interface inspired by that of Seeplex. The interface uses object binding semantics
and is thus harder to use, but its portable event format allows one to save the
results of filtration in a file for later reprocessing. Pablo's base assumption is
that visualization is a process which can ignore the semantizs of the data being
studied. Again, this is an assumption which works when one is comparing
architectures, but not when one is trying to debug on a particular one.

From the debugging perspective, the most :nteresting debugger is the Prism
system for the Conpection machine. It allows a very limited though quite ineful
form of visualization: a listributed array can be perused slice by slice in sev:
eral dimensions. either in textual form or as s graphical rendition. In graphical
mode. each pixel is colored sccording to the value of a particular array cell, and
a pixel can be queried for its “alue using 4 mouse graphical input device. Many
debuggers are pow providing inte*faces to X windows renderers such as xgraph,
and several are now providing interfaces to the scientific data visualization sys-
tem AVS. These interfaces are not just useless bells and whistles: Lapolia[8] has



developed a nice set of techniques for designing debugging experimenta using
data visualization. The most interesting of these is the coneept of injection, in
which the input data to the algorithm is modified to cause a particular pattern
in the output data visualization.

This paper is divided into five parta. The second part identifies cur integra-
tion strategy, the use of a common data format. The third part discusses how
to convert event traces into this format, and describes a portable, self-defining
format for corversion specifications?. The fourth part discusses details of the
data flow visualization system which uses this format. The fifth part discusses
the design of the next generation visualization system, which uses relational
database query semantics instead of data flow.

2 The integration problem

Integration of debugging, performance analysis, and performance visualization
is made difficult by the large number of subsystems that must be combined.
We use the visualization system as the central core into which these parts are
merged, unlike existing approaches which tack a visualization system onto an
existing debugger as an afterthought.

Each major subsystem is managed from the visualization system while hav-
ing easentially unchallenged control of some facet of execution monitoring. These
subsystems ultimately produce streams of data which the visualization system
filters and renders. At the top level, the user activates the subsystems and man-
ages the streams of data bt/ using a graphical editor to specify interrelationships
between tke subsystems and displays.

One subsystem is a conventional serial debugger that allows the user to
interactively control the execution of a prosram, insert breakpoints, and to
probe for values. It also provides access to the source code text.

Another subsystem deals with event logging in an executing program. The
user can enable and disable event logging of various kinds, and this subsystem
fetchen the resultant event traces for use in the rest of the system or for archiving
in files.

A similar subsystern manages the real-time dats collection instrumentation.
The user can configure this instrumentation to monitor state information de-
srribing communication activity, process states, the contents of progrem vari-
ables, and the like.

Yet another subsystem manages post mortemn analysis of event traces storad
in files. It has control features for stepping forward and backward at various
speeds and for jumping to arbitrary points in a trace,

All of these subsysteins are largely independent Jf the visuslization and anal-
yuis software. We are in the process of developing specifications for the inter{faces

2Thia section. though not presented in my talk, is important to current discussions of
portable event trace formate



between the components so that alternate versions of these subsystems can be
substituted for new computer architectures. In this way we hope to achieve a
useful degree of portability. To port the software to a different architecture,
compiler, operating system, and instrumentation package, one would only need
to rewrite these subsystems in accordance w..h the interface specifications.

2.1 Levels of debugging

In our debugging practice, there are essentially three kinds of bugs®. Local bugs
include anything which can be seen to be incorrect in the context of a single
isolated process, such as typing errors, loop limit problems, array boundary
problems, or other algorithmic misunderstandings. These bugs may typically
be studied by executing the program on a small architecture of one or two pro-
cessors using traditional methods. Global bugs include any incorrect assumption
avout the relationships berween processors, such as race conditions and dead-
locks. These bugs are ty: .lly found by utilizing an event trace, either through
direct perusal or an 'insi..t replay’ interface for removing nondeterminism(9).
Performance bugs include any incorrect prediction about the efficiency of a cor-
rectly functioning program. These bugs are typically studied through profiling,
though for massively parallel machines visualization is usually neressary to ren-
der an snimated representation of execution. Most performance visualization
systems utilize an event trace, and can be considered as higher-level versions of
the trace-driven debugging used for races and deadlocks.

Our goal is to unify the levels, by designing a data rcyresentation common
to all levels and providing an environment in which that representation can be
freely manipulated and rendered. Any common representation must be com-
plex enough to embody the data from each source, while being simple enough
to render and und.rstand easily. We choose Lhe state vector as the common
representation. Obviously, variable values and real-time statistica may be inter-
preted as state variables. Events are converted to state variables by analyzing
the effects of each event on global state, so that the effect of one event may
be the change in many state varianles. For example, the occurrence of the one
event '16-byte message received on processor 9 from processor 13' might change
the values of the following state variables:

1. sumber of messages sent from 9.
2. total bytes sent by 9.

3. sige of laat message from 9.

IWae kindly refrain in this paper from discussing our definition of a bug. whith has caused
some conaternation among colleagues; however, we [eel it somewhat llluminating to mention
our definition here. A bug is a deviation beiween actual and axpeciad performance, ie., a
deviation between arctual performance and the programmer’s internal model of execution. A
bug thus lives not in the program. but in the programmer’'s model: bugs are not found in the
code, but in the commenta'



number of messages received on 13.

total bytes received on 13.

size of last message tc 13.

the state of each channel connecting 9 and 13.

® N o o oA

. number of events processed (an artificial clock).
9. and scveral other states more dependent on the specific architecture.

Obviously, an event is completely represented in the state space only if enough
states variables are defined to completely encode the event’s contents.

This encoding has advantages and disadvantages. An event is hard to render,
because it inherently has no duration in time. Showing an event in an animation
is inherently misleading, as the rendered representation must have a duration
to be perceived, while the event does noi. >iate information is much easier to
render naturally, as a state iniderently has a duration. This makes time lines
and snapshots easier to construct and interpret. However, the choice of states
certainly affects how much information is gleaned from the irace, and a bad
choice can lead to a state vector containing the wrong information. It may also
be important for the user to see the real trace unmodified. This is easy, but
nevertheless increases the complexity of the analysis tool as well as the number
of visual formats the user must learn.

2.2 A ‘'note’ on terminology

Any instrumentation is selective, and the data available to the user is a small
subset of the actual data available. We find it necessary to distinguish between
the ideal data embodied in the execution and the data actually available to the
user through a tool. Ideal events occurring within the computer are recorded as
notes. The analogy seems to refer to the common debugging practice of taking
notes on paper as one ubserves execution, though the real simile is musical: a
seiion of related events is a chord. Likewise, ideal statistics embody all possib’ :
stale irf~rmation we could peruse at a given point in time, such as memory
contents, throughput, program counter locations, and the like. When we record
a statistic, we refer to it as a ‘tally’. This word is really most related to the wny
we analyze the note trace (our version of the ‘event trace'): as we encounter
events we ‘Lally’ the changen in all states caused by each event. This terminology
may seem like a hair-splitting triviality, but the appropriate choice of words
allows us to converse in concrete and well-defined terms, facilitating the design
and construction of otherwise virtually inconceivable data manipulations.



3 Converting notes to tallies

As debugger probes and real-timne statistics are naturally interpretable as tallies,
the real problem with integration is to express note trace data in tally form.
This is simplified by realizing that tallies are naturally organized as vectors,
where each vector consists of tallies of a particular type, and the index set of
the vector ranges over all locations within the architecture where that type of
tally is meaningful. The problem is to specify how to compute these vectors
from the note trace.

This problem is made more difficult by the current interest in standardizing
event traces. The benefits of standardization are obvious, as analysis tools
may then be reused on traces from many different architectures. However,
standardization has serious problems. First, one cannot adopt a standard which
keeps researchers from defining new notes and note semantics; any standard
must be extensible as new ideas are developed. Second, one cannot standardize
the semantics of the notes, as it is currently impossible for researchers to agree
on the semantics of even the most simple notes. A “message transmission”
means something quite different on a SIMD machine than on & MIMD ore.

The main difficulty results from the disparity between the way traces are
recorded and the way they are analyzed. Whereas one can reasonably only
record local system notes literally as they occur, one would rather analyse the
effect of notes upon the tallies representing the global state of the parallel com-
puter. For example, the latency in sending a large message between processes
on different processors is best determined by subtracting the times of the notes
corresponding to its sending and its receipt. By note semantics, we mean a
systemn for translating from the values appearing in fields of the notes to a set
of values (tallies) that are the basis for the analysis.

It is these semantics that are difficult to generalize, leading many imple-
mentors to code their note semantics into a specialized trace interpreter that is
integral to the analysis Lool[2, 6]. We view the analysis process as consisting
first of the conversion of information in the notes into appropriate tally values,
followed by the application of the analysis tool to the vectors of tallies thus
generated.

3.1 Current standards

To date, two approaches to standardization are prevalent. The first approach,
proposed by Reed(10], normalizes note trace formats so that each note simply
asserls the value of one or more system atatistics The format is sell-defining;
a header to the note trace defines the record format and presents a mapping
between note fields and ASCII names which define field semantics to the user.
There is no semantic content to the field itself; it just specifies & named number
which the user is left to interpret semantically, To convert a trace to thin
format, one applien a filter that ulilizes note semantics to produce a semantics-
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free trace. While this provides a nice interface to analysis tools (which merely
must accumulate fields), the format is actually quite far removed from the raw
note trace recorded in the machine. In eflect, semantic analysis has been done
already, by transforming the raw note trace into this form.

A second approach(12] is to provide a packaged interpreter for the not. trace,
including accesa functions for all the statistics the interpreter knows how to
compute. This approach again avoids the issue of note semantics, by providing a
prepared filter which essentially performs the same function as Reed’s translator
to normal form. Event semantics are interpreted internally, and the results are

several arrays of data, semantics-free except for the names with which they are
labeled.

3.2 Our approach

We have dev.loped a working prototype of an alternative approach, in which
note semantics are coded into a declaration file using a relational query lan-
guage based on the work of Snodgrass[11]. The declarations are compiled into
a program for a universal trace interpreter, which is responsible for the final
translation from trace to tallies. There is no need for special access functions
in the analyzer: it need only understand the data format produced by the uni-
versal interpreter. This strategy subsumes the function of the interpreters for
the trace formats we now use, and we have yet to find a trace format whose
semantics are not representable using it. We propose this method as a possible
standard for defining the semantics of note traces.

Compilation of the declarations to an internal form suitable for interpre-
tation is sccomplished by a simple recursive-descent parser/translator for the
declaration language. Some care must be taken in the compiler to ensure that
the program it produces for the interpreter is reasonably efficient. To illustrate
the issues and methods, let us take some examples from a set of declarations
that describe mainly application-level notes for a parallel program for alpha-beta
search(3].

3.3 Examples

Here is a set of declarations for a tally encoding the concept of the state of an
algorithm. This refliects the fact that the computation proceeds into different
phases at different times (somewhat unpredictably and saynchronously) on dif-
ferent processors. The enumeration of the dozen ot so different algorithm states,
as well an the declarations dencribing how to infer the state from the note data,
are provided by the user who wrote the application. The declarations describe
“Attributes” which are flelds of notes, “Variables” {or referring to values within
declarations, and “Tallies” which are the values to be computed.

Attribute code Type(Short) Name ("Note code”) Fetch(huh,2);
Attribute nodeid Type (Short) Name ("node”) Fetch(buh,0);



Variable nan Type (Iat) ;
Tally Algstate Type(Pernode) Name(” Algorithm state”) Initial (IDLE) ;
When Ev ( code==S_START, nnmnodeid ) Set Alg_state[nn] = START ;

The first two lines declare two fields of notes. The “code” fleld serves as
a primary key telling the note's type, while the “nodeid” field indicates the
processor on which the note originated. “Fetch(buh,n)” describes how to fetch
a field from a nole, in this case by fetching an unsigned halfword stored in
big-endian byte order. There is a large, expandable set of such fetch-functions,
including some that handle fields whose size and location within a note are not
constant, as with Heath's(5) or Reed's{10] formats. The third line describes a
varisble used in following lines to record the numerical processor identifier of
the processor on which the note occurred. The fourth line defines the tally as
an array of values, one for each processor in the parallel computer. The last
line is one of many describing the dependence of this tally on a note having
a particular code field. (“IDLE,” “START,” and “SSTART"” are mnemonics
for literal values.) This line contains simple expressions involving assignment
and relational operators; the syntax supports more complex expressions using
a C-like syntax.

The compiler’s job in this case is to digest the first four lines, passing declar-
ative information along to the analyzer, and to convert the last line into a
procedure that determines whether a given note affects the tally, and performa
the update if it does. The compiler constructs one such procedure for each
“When” ztatement, by viewing the statement as an expression to be evaluated,
If evaluation fails, then the note does not affect the given tally; if it succeeds,
the tally is updated via an assignment statement.

The input to the interpreter is a set of such procedures, which are evaluated
using an unbounded array of “registers.” Each attribute fetched from a note is
put in a dedicated one of these registers. The compiler avoids refetching any
field from a note by remembering what register it has been fetched into once it
has been referenced in some expression. An assignment of a value to a variable
is handled at compile-time by binding the variable to the register in which the
value occurs. Bindings of variables to registers span one “When" statement,
while bindings of attributes to reginters span all the expressions.

A slightly more complicated example illustrates the use of groups of notes.
The following declarations define a tally that records the cumulative elapsed
time between the appearance of notes of two particular codes on a processor.

Attribute time Type(Int) Name("time™) Fetch(bw 4);

Variable t1 Type (Int) ; Variable 42 Type (Int) ;

Tally Timewaiting Type (Pernode) Name(" Time waiting for workers™);
When Ev ( codews]_RETURN, nnmnodeid, t2mtime)

After Ev ( codewnS WAI'l' | nodeidmmnn, tlmtime )

Set Timewaiting[nn] += 12 11



Until Ev ( codem=S_EXPAND, nodeid=mnn ) ;

The “After” statement tells the interpreter to scan backward through the
notes until it finds one that allows succeasful evaluation. The “Until” statement
tells the interpreter when it may assume the search has failed and abort the
search process. Without such a bound, if a desired note is mimsing for any
reason, then the search will proceed through the entire trace before failing.

4 The visualization system

Designing a visualization user interface for execution data is considerably more
challenging than designing a scientific data visualization system. For one thing,
the data format for scientific visualization data is fairly well fixed: scalar and
vector fields in 2-space and 3-space. Most data is continuoua in nature and one
can meaningfully interpolate between adjaccnt measurements. Also, the data
values needed to render each point are quite unimportant after the rendering
occurs. Rendering is the only goal, and global appearance is the only deliverable.

By contrast, execution data has many problems. Execution tallies are in-
dexed over discrete sets by nature. A particular tally may be stored in an array
indexed by several sets, relating to locations not in space but in the computer’s
architecture. For example, the tally representing memory location values might
be indexed by processor number, process number, segment number, and offset
within the segment. Index sets may change dynamically during execution, e.x.,
processes can be initiated and terminated. There is often no easily interpreted
notion of ‘neighboring value’, and interpolation is almost never a meaningful
operation!. Tally data has very high dimension, partly due to the way tallies
are derived from notes, so that comparison of multiple displays is typically more
important than obtaining a single view. Most important, the individual data
values are indeed important even after rendering is done. The global view only
serves Lo lead the user to particular subsets of errant values, which must then
be interpreted as a bug in the program.

This need to work backward from the visualization to the original data, from
that data to the event trace, and from the event trace to the bug, in unique to
debugging. Much work on locating bugs from the event trace has been done in
PI'D(1); the approach is called ‘lowback analysis’. We generalize the problem
by adding a visual component. | prefer the terin ‘caunal backchaining’, from
the theory of program correctness. Backchaining is the procesa of using logical

4{One tool, which shall remain nameless, displaya communications throughput on a hyper-
cube as a rontour map of a grid, where sach row s & message sourre and aach rolumn a
mesaage destination, hoth sequenced in gray code order. This provides an attractive display
which, however, ia meaningful unly if the algorithm being studied exclusively uaes the grid
enhediding shown on the map with only nearest neighbor communication. Using this display
for any other kind of algorithm is Inherently misleading.

Y



predicates about the end of execution of a procedure to infer predicates about
each line of the execution. In our case, the predicates are the values of tallies,
and the backchaining first determines what events affected those tallies, then
(indirectly) what caused the tallies to become undesirable.

4.1 A good debugger visualization system

These commenta motivate the following discussion of an ideal visualization sys-
tem for debugging. Firat, there must be a direct and easily understood cor-
respond-nce between locations on each display and the individual data values
which were used to create it. For example, as in Prism, we must be able to
map each pixel in a two-dimensional map of array contents back to the array
element which determined its color. But more important, there must be a map
from surnmary data to the values affecting the summary.

Suppose processor state is coded as green for running and red for idle. Sup-
pose the current state distribution is rendered as two lines, one green and one
red, where the relative length of the lines indicates the balance between running
and idle processors. The display is thus a frequency summary, where the length
of each line is proportional to the frequency with which processors are in the
line's category. Sometimes each pixel of a line corresponds with one processor
in the line's category. So selecting this pixel is equivalent with selecting the
processor for further study. More often, however, one pixel ia present because
many processors are in the category. Selecting a pixel therefore selects a subset
of proceasors, and selecting several pixels (or a line segment) selects the union
of the subsets for each pixel. The mapping between pixels and processors is
not uniquely determined, and can be constructed in any way, as long as some
mapping is available. In our case it is induced by an underlying ordering of
processors, which can be modified uring a sorting filter.

Second, all displays provided should be inherently scalabic. The user should
not be forced to learn to interpret displays which will not be of ume in interpreting
maassively parallel executions. Many inherently scalable displays already exint
which can be applied to understand small scale executions with the same facility
as the unscalable displays currently in use.

Third, there should be an easy way to construct multiple displays of the
same date Since the data is inherently many-dimensional, the user wiil often
be making comparisona of similar data. One way to accomplish this is to fix the
mapping {rom value to graphical attributes for all time. This is not desirable,
as we do not yet know the most efficient mappings. Thua an ideal system allows
multiple mappings, each of which ean be used on several tallies, each of which
is diaplayed using the same mapping in several different ways.

‘ourth, there should be an ensy way to limit discuesion Lo a npecified subnet
of the whole data set, redisplaying it in & different way. If only part of a display
is in error, it should be possible to single out that part and redisplay it alone
with more detail. One should be able to ‘select and scope’ a diaplay to zoom in
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on detail, as well as to ‘expand and illuminate’ data by showing finer detail.

4.2 The data flow approach

We approach the problem of providing the ideal visuslization system by utilizing
a data flow model of analysis, similar to that used in the scientific visualization
package AVS and the Pablo[10] event trace viewer. The data that flows consists
of vector: of tallies, indexed by some (pcsnibly cartesian product) index set.
The data flow graph describing the whole visualization environment is a directed
acyclic graph whose nodes are data sources, filters, and displays.

There are several kinds of sources, all producing similar data. A source can
produce a tally from a debugger variable probe, an event trace, or a real-time
data collection subsystem. One source cun provide several kinds of tallies, each
an independent output. Each kind of source has its own control window with
whick one can control what data is shown. An instance of the debugger is the
control window for the vars™:la probe, while the event trace window controls
the current time being viewed and the real-time window allows specification of
the real-time data to be ccllected.

Filters in our system differ from thos= in Pablo. A filter is often not a data
transformation, but # augmen:ation: extra data is added to each element of
the input tally. Added data includes graphical attributes (such as color, shape,
and texture), selection informaticn determining a subset of data of interest, and
ordering information determining the order in which data is presented on an
axis of & display.

The concept of a disf lay is not too well distinguished from that of a filter.
Many filters have associated disp:ays. Graphical attribute filters, for example,
allow the user to paint 4 aphical attributes directly onto data displays created
by the filter. A display is a special case of a filter, rather than the other way
around.

4.3 Icons and instances

Reusability of attribute maps ‘and other filtration schemes) is accomplished
using an instance scheme. Each filte, car act independently on several sets of
input vectors, providing an output vec’ st for each set. Each output vector is
produced by copying tally duta verbati:a irom one of the input vectors while
computing augmenting attribut *» based on the values of all vectors. By apply-
ing several instances of a filter to different data streams, the user can reuse a
complicated filter configuration without copying or redefining it. Changes to
the filter's netup affect all data strea'ns vhi-h flow through it simultaneously.

An example icon is shown in Figure 1. Fach icon has an identifying glyph,
shown in the top square. Below thir there is & vertical bar containing all
instances. Each instance consists of several inputa and a single output, where
the fan-in on inputa is 1, while «ach output has infinite fan-out,



Figure 1: An icon with two instances and three inputs for each.

Icons are ‘plumi  together’ into a directed acyclic graph, as in Figure 2.
Here two inputs from a real-time collection subsystem are mapped to graphical
attributes, sorted by value, and shown on a couple of LED-styje displays.

4.4 Filters

There are several kinds of filters we use to augment data before display. A
transforming filter applies 8 mathematical function to get new data trom old.
Examples are logarithm, bit field extraction, integration (running sum) and
differentiation (running difference). An awgmenting filter adds attributes to
data, such as color, texture, sorting order, etc. A selective filter selects a subset
of its input. This is really another kind of augmenting filter, which adds a
selection bit to each datum describing whether it is included in th2 subret. An
aggregating filter groups data into groups, typically by summing. Currently we
have only one kind of aggregative filter, which folds data indexed by hypercube
processor aunider onto a subcube.

A key remark is that aggregating is to be avoided if at all possible. An
aggregating filter in the chain is a many-to-one mapping. In backchaining to
the original data, one thus has s one-to-many map in the reverse direction.
This means that the only way the system can respond to a request for more
information on an aggregate is to present . subset of values rather than a sin.gle
one. The only way Lo get apecific information un an aggregate is to back up
in the chain before the aggregation operation and re-render the input to the
aggregator in a new way.

4.5 Displays

Displays take inputs which have already been augmented by graphical informa-
tion, and pick and choose within that information to come up with a rendering
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Figure 2: A sample data flow visualization scheme.

of the data. Each display has the right to utilize or ignore augmentations as it
pleases: one display may utilize a textural augmentation while another ignores
it.

The requirernent that displays be scalable severely limits the kinds of displays
we can construct. We must rely instead upon zooming to see detail. The only
scalable dispinys are scrollable text, pixel maps, scatterplots, and backchainable
summaries.

A pixel map is simply a display where each datum controla the color, bright-
ness, or texture of asingle pixel in a two dimensional array. The pixel in question
can be rescaled for easy viewing; s display pixel may be 9 screen pixels wide.
Selecting a group of pixels allows them to be redisplayed in a different way.

A scatterplot is particularly useful because it is inherently scalable. A one-
dimensional scatterplot displays values as hash marks on a number line, while
a two-dimensional scatterplot renders pairs of values as points in & Cartesian
coordinate systemn. Scatterplots provide a global navigating point from which
to peruse the data. If one is interested in maximal values, one selects them
on the scatterplot and redisplays the output of the scatterplot to see them.
Changing the selected region automatically changes the subsequent display of
selected itemns.

Summaries are only provided if there is a well-defined notion of which data
affect each part of the summary image. For example, in » bar chart showing
frequencies of values, selecting a bar selects all values counted as within the
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bar’s category. Then these values can be displayed subsequently.

4.6 Usage

The user of our system has two basic operations at band. One can select and
zoom in on particular data of interest from a global context, or augment and
illuminate data by adding information. A typical use is to understand 1024
values of a variable x, obtained from the debugger. Suppose that x is a phase
counter for your algorithm, and that you expect all values to be 2. The first
action will be to scatterplot x in one dimension. Suppose all values are not 2,
80 that several other hash marks appear on the scatterplot. The second action
is to select the other hash marks for further analysis. Then the output of the
scatterplot is connected to a textual display one can peruse, showing only the
errant values. But suppose this display is still too hard to understand. Cue can
map the data instead into colors and show the results on a pixel map, fo get an
idea of how many processors there are in each incorrect phase. One can “h.n
select subsets of the pixel map and repeat the process.

4.7 A prototype

As a test case, we are implementing a debugging and visualization environment
for the NCUBE/2. This prototype uses operating system instrumentation(7}
to provide an event trace and real-time data for each execution. Compiler
instrumentation is not used. The NCUBE/2 was chosen for this because there
are now delivered systemns with 1024 processors: the maximum configuration is
8192. While our prototype is aimed at one specific architecture, our real goal
is to develop paradigms of use and debugging strategies which are applicable to
any maasively parallel MIMD or SIMD architecture.

The current prototype has the data flow visualization system in place, with
data sources for both event traces and real-time statistics. We are working now
upon the integration of our debugger “tdb”(4] into the visualization system.
Currently the visualization system supports only 'sugment and illuminate’ style
operations; we expect soon to have selection and zooming working properly.

4.8 Implementation details

It is important, especially when dealing with real-time visualization, to make
one's visualization system as efficient as poasible. This is done in our system
by using a fragmented vector representation of data with access counts. Each
tally is a dynamically allocated array of data, where each cell contains buth the
current and previous values of a datum for optimal display updating, as well as
a pointer iato a linked ‘change list’ of array cells which have changed in value
since the previous display update. The array is passed from filter to filter by
reference, and an acceas count is kept for each filter which references the array.
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Augmentation data is kept in a series of arrays with parallel structure to the
tally array, each also passed by reference with acceases counted. Augmentation
arrays are created on demand by filters, and are controlled and updated only
by the filter which created them. If a filter overrides an augmentation, that
augmentation is still available before the filter; if one maps colors twice, then
there is one color map before the second map filter and another afterward.

5 Beyond data flow

Unfortunately, our work has shown not only the benefits of data flow but also its
limitations. The main limitation is the base data type: the tally vector. Defining
index sets is difficul. especially since the index sets can change dynamically.
Further, the model cumpletely excludes direct manipulation of note data except
in the tally projection of that data. A different approach is needed to completely
integrate all forms of information into a complete whole.

The answer seems to be a simple generalization of the data flow model. For
simplicity, consider the space of all tally values as a dat >base relation:

tally(name, location, value)

Then we can replace the vector of tallies of ‘'messages written’ with a relational
predicate

tally(names="messages written", location, value)

which is true when the name of the tally is ‘messages written’, the tally has
a concept of location, and the tally has a value. The predicate can replace
the vector, provided there is a way to generate the relation from the predicate.
Augmentation of a vector is achieved by augmenting the relation, so that a color
map filter transforms the relation into a new one

tally2(name, location, value, color)
with associated predicate
tally2(name=="messages vritten", location, value, color)

meaning that the second version of the tally has the same name, a defined
location and value, and in addition a color. Under this set of semantics, all data
is globally available, relational predicates are the medium of communication
between filters, and filters modify the global relational space for new relations,
passing this on to the next filter by modifying the query predicate appropriately.
In other words, the appearance of the data flow graph remains the same, but
the semantica are those of a graphical query language.

The semantics of the revised graphical interface are quite simple. In the old
system, an arrow from fiiter A to fiiter B asserted that data flows f-om A to B.
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I~ the new system, the same arrow is interpreted as ‘A scopes B'. That is, the
output of A is a set of predicates which direct B to consider a particular subset
of the data, and, more importantly, to ignore the rest.

This change in semantics has important ramifications. Several inputs can be
meaningfully fed into a single input port; the resuit is the predicate which is the
logical conjunction of the input predicates. For example, if one predicate says
that the procemor number must be between 0 and 7, and another predicate says
that the parameter of interest is ‘messages written’, then the conjunction is the
tally relation containing ‘messages written’ for processors 0 to 7. This means
that parts of a single tally definition can be provided from different filters, none
of which has s cumplete picture of the definition. Also, the graphical represen-
tation of the visualization environment no longer directly corresponds with tne
actual processing of data taking place; it is only a semantic representation of
the syswem, not a description of the underlying data manipulation.

5.1 Our relational model

We res ructure our database model to be easily usable in this context. First,
we insure that a relation field with a given name always has the same semantic
interpretation, i.e., there is a well-defined mapping from a field's name 1o what
its value means, and hence to what it is appropriate to do with the value in that
field. Second. we view each tuple in a tally relation as a tuple in a single global
relation, where uomentiored fields in a tuple are assumed to be left blank. We
thus combine tuples with dissimilar structure into s unified relational context.
Fot example, the relations:

program_counter(processor, process, offset)
messages_sent (tally, time, processor, value)

are transformed into subsets of the same relation

taple(relations="progras conater"”,
processor, process, otfset)
tuple(relations=s"tally”,
tally, time, processor, name"="messages sent", value)

where the fields of the whole relation are

tuple(relation, processor, process, offser,
tally, time, name, value)

andt 's are left blank when not meaningful in context. Since we are dealing
with 1gle globai relation, we need not mention it in predicates. To select all
tuples erring to program counters. an appropriate predicate is:

Talationss“prograa counter”
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For our purposes, we need predicates for equality and membership in a set.
This database organization is for ease of specification, not ease of manipu-

lation. Internal representation will differ. In fact, many relations will not be

stored at all, but simply queried from the computer architecture on demand.

5.2 The global relation space

For purposes of illustration, let us define a simple global relation in terms of its
component relations. This is an intentionally oversimplified model, constructed
only to illustrate a basic design point.

1. tuple(relation=="note",
note,time,processor,event,value)

This encodes the global space of events. note is a note serial number, in
local processnr context. event is a code determining the type of event,
and value is an amsociated value,

2. tuple(relation=s"tally”,
tally,time,processor,name,value)

This relation encodes the global space of tallies derived from a note trace.
tally is a tally serial number. name is the name of the tally whose value
is given by value.

J. tuple(relation=="gnapshot"”,
snapshot ,time,processor,name,value)

This relation encodes the global space of real Lime snapshots of execution
statis ‘cs. snapshot is a snapshot serial number. name is the name of the
tally whose value is given by value.

4. tuple(relation=="program counter",
processor ,process,otfset)

This relation encodes the global space of program counter locations. where
offset is the current value of the program counter for the given processor
and process.

5. tuple(relation=="variable",
Processor ,process,seguent ,offset ,nome,type)
This relation enzodes the gloLal space «f variable definitions, encoding
both the aame and type of each active variable.
6. tuple(relations=e”gource”,
oftset,f4ile,line)

This relation encodes the relationship between program counter locations
and source fle linen, where of oot 1n & program counter value



5.3 Inputs and outputs of debugger components

Our goal now is to characterize usage of these relations in an integrated debug-
ging environment. Given that we have a globally consistent field name space,
predicates about fields are used as the communication medium between debug-
ging components. Each component uses the global database as it sees fit, scoped
by field limitations input from other components. The result is a generalization
of window based debugging which allows dynamic rescoping of views as a result
of connecting or disconnecting components.

The ezecution control window is s control panel. Its inputs are predicates on
program counter value, which are interpreted as breakpoints®, and predicates on
processor and process, which are interpreted as the scope of the panel’s control.
E.g., il only nodes 1 and 2 are allowed, then control operations initiated at the
panel only apply to those nodes.

The tert window displays program source. Its inputs are predicates for
processors and processes to track. It uses the current values of the program
counter (relations="program counter”) as well as source code correspon-
dence (relationss"gource") to display program counter locations and accept
user input {or breakpoints, which are predicates involving the program counter
(the oftset field of the program counter relation). These predicates may be
input to the execution control window.

The note window shows the event trace. Its inputs are predicates for pro-
cessors and event types to track. It uses the note trace (relation=s"note") to
display a buman-readable or graphical trace depiction. Its outputs are predi-
cates on processors and event tvpes. Processor predicates can scope any other
window, while predicates on event type are used solely to scope a child note
window to zoom in on detail.

The tally window allows the user to select tallies for display. It has no
predicate input, and its output consists of predicates on the name field of the
tally relation. This output is subsequently used by a display window to render
the data.

The probe wvandow allows the user to specify memory to examine. It has no
preaicate input, and its output consists of predicates on the name field of the
variable relation.

The display window allows Lthe user to diaplay data. Its inputs are predi-ates
describing subaets of tallies, real-time statistics, or notes. It uses the inputa to
render the data selected. 1is outputs are derived predicates, modified by user
input and nelection.

‘This in just a sampling of the components which could be utilized, intended
to give the flavor of Lthe design without descending too deeply into details.

SFxcuse the lack of warchpoints in this model, for simplicity.
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5.4 Existential and universal fields

This model is made user-friendly by defining defaults for unspecified scopes. We
are greatly aided by the natural paradigm of use for a debugger: defaults take
one of two forms. Either the default is to select all of a field, or none of it: fields
are thus sniversal or existential. Characterizing a field is easy: it is existential if
the normal operation is to ignore the field, and universal if the normal operation
is to include all values. Things to be displayed are universal, i.e., the default
is to show everything. Scope of processor control is universal, i.e., the default
is to control everything. Breakpoints are existential, i.e., the default is to run
without interrupiion. Other data is similarly characterized.

5.5 Paradigm of use

The fundamental advantage of this organization is that scoping operations can
be applied and removed easily. Suppose one wishes to add a few breakpoints
temporarily. One creates a new text window, sets the breakpoints there, and
connects the window to execution control, where it asserts the breakpoints.
Removing the breakpoints requires disconnecting the windows, and reasserting
them just requires connecting them again. The text window containing the
breakpoints has a life separate from the actions it specifies; disconnecting 1t
retains the defiaition of the actions without their execution.

A second advantage of the organization is the ease with which one can move
between levels. Selecting events in a note display can affect which processors
are displayed in a visualization window, simply by coupling note selection and
visualization through predicates. One visualization can be created relative to
several different kinds of input: one can select the parameter from the real time
statistics, select the processors from the notes, and the processes from a sum-
mary display of procesa behavior. This complete interdependency is neceasary
in order to fully integrate all forms of information we have available.

6 Results and conclusions

There is clearly great value in integrating the vastly dissimilar data available to
a debugger into a coherent whole, but there are still many problema to sol e,
Transtorming all data into a shared ‘normal form' (such an tallies) is a partially
succenaful approach, as one may still need to see data in its raw form due
to omisaionn and deletions during the transforiaation. o the extent that the
‘normal form' of tallien succeeds, data flow analysin has proven to be a good
approach to understanding them. The base atrategy of augmenting information
inntead of tranaforming it preservea relationships between the depicted image
and the raw data which generated it, which in turn s related to the nature of
the hug being analysed. The data flow graph depicta global context for the uner,



serving as a navigating point and allowing reuse of complex filtration schemes
for visualizing distinct but similar datasets.

The alternative approach is to leave all data in essentially raw form, and
express all displays as queries into a globally accessible database. This has
benefits and problems. The major benefit is that the many facets of execution
data may be viewed in essentially raw form, with each interaction from the us::
causing display scope modifications for dats in other forms: selecting an r:vent
can modify display of a statistic. This tight interdependency between displays is
& nice expression of the similar tight dependency between types of perfor nance
data.

But even this approach has problems. Query propogation is a lot harder for
users to understand than data flow, being a foreign concept to most supercom-
puter developers, who come from a numerical analysis background. | expect a
modicum of user resistance for this reason. It is because of this expected resis-
tance that [ have intentionally embedded data flow semantics within the new
semantics as a subset. | even expect resistance to the multiple windows within
which one views different data types.

While parallelizing compilers may someday provide acceptable performance
for mamively parallel machines, it is my view that there will always be a need
for the programmer to understand the workings of the architecture to achieve
optimal performance. Our tools and aoproach are aimed at this goal, and thus
targeted at the small sudience which really wishes to push these architectures
to the limits of their capabilities. For this noble purpose, complete, interrelated
executior: data is essential. The relational model is designed for this purpose
above all others.
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Serial programming environments have not provided explicit support for
tracking changes in program state over time. The MasPar Programming
Environment has recently been enhanced with program animation and his-
tory recording which provide more powertu!l support for understanding the
behavior of complex, data parallel programs.

1. Introduction

Programming environments have traditionally included a rich set of tools for mapping
programming language abstractions onto machine abstractions (e.g. compilers). The
reverse mapping has not generally been as well supported. The ideal programming en-
vironment creates the illusion that the underlying machine directly executes the state-
mente of the programming language. Figure 1 shows the MasPar Programming
Environment (MPPE)Y, a tool for helping programmers understand the behavior of com-
plex programs. MPPE maps the abstractions of a massively paraliel, SIMD architec-
ture, the MasPar MP-112], back into data parallel programming languages, currently rep-
resented by data parallel variants of C and Fortran!®4l, MPPE delivers graphical,
source-level control of the execution of a program, tabular and visualizer-based inspec-
tion of variables, and incremental, graphical statement and subroutine profiling!l,

One of our goals in writing MPPE has been to eliminate the need for recompllat'an as a
debugging strutegy. Unix™-based programming environments require recompliation to
operate symbolic debuggers, to invoke optimization (which is mutually exclusive with
debugging), and to profile. Ali of these operations are enabled simultaneously by the
default switches of the MasPar compilers.

Enabling debugging and profiling are not the only debugging operations invoked by re-
compilation, however. One common dobuqgqing stratogy Is to insert diagnostic print
stitomants. As the programmor's undaerstand.ing of the location of a bug changes, the
pnnt statomaoents nead to be changed and movod arcund, nocessitating the recompila
tion of at least one source 14 and tho relinking of the ontire executable. In intorviows



with users we discovered that one of the features of debug print statements they liked
was the ability to review a variable’s values over time, and to juxtapose two changing
variables to understand their interaction. In data paraliel programs, with their large data

sets and parallel control structures, support for this style of debugging is particularly im-
portant.

We have added a history recording mechanism which, in conjunction with program ani-
mation, eliminates the need to recompile programs to track and compare variables over
time. In addition, we have found the history mechanism amenable to a varisty of exten-
tsions to aid in the understanding of data paraliel program behavior.

2. Execution Control

Mapping the machine’s view of a program execution (expressed in terms of machine in-
structions) into the programmer's view (expressed as programming language source
statements) is the job of the execution control commands. Execution control illuminates
control-oriented bugs by showing which statements are executed, for instance in a con-
ditional construct. As all displayed data values are updated whenever the program
stops, execution contro! also provides entry points for insnecting data.

MPFc provides the three essential execution control commands: “continue”, which runs
the program until termination or until a breakpoint is reached, “step®, which executes the
program until the beginning of the next source statement, and “skip”, which executes
until the beginning of the next source statement in the current routine. Breakpoints are
created and destroyed either by clicking in a dedicated screen region next to a source
statement, or by selecting a routine name and issuing a menu command. Breakpoints,
once created, can be given various attributes such as an ignore count, which associates
a down counter with the breakpoint which is decremented every time the breakpoint is
reached. When the counter reaches zero it is reset to its original value and the program
is stopped. Finally, execution can be quickly controlled by selecting a line or routine
name and issuing tho “go 1o line” or “go to routine™ commands.

One of the “accelerators” in the MPPE user intertace is the user of the carriage return
key to repeat the last menu command. When used with the execution control com-
mands this feature allows the user to quickly step through a program, although it intro-

duces the possibility of the “single step twitch”, a distressing quivering of the pinky finger
on the right hand.

3. Animation

Whilo enhancing the domonstration value of MPPLE we decided to implemaent a “follow
the bouncing ball” stylo of animation, where tha program would continuously singlo step



without any user intervention. At first we added an “animate” menu item for this feature,
but a user quickly asked for a a version of animate that worked with “skip” instead of
“step”. Rather than add yet another menu item we took a step back to see if we could
devise a more general solution.

As shown in figure 2, we decided to add a check box, labelled “Animate”, underneath
the machine icon. If the user checks the box, any subsequent execution control com-
mand is repeated until either the box is no longer checked or the program stops for
some reason other than the command. For instance, by checking “Animate™ and then
issuing the “step™ command the program will continue to single step untii the program
terminates or encounters a breakpoint. The same is true of “skip™, “go to line", and “go
to routine®. “Continue” is slightly different, as encountering breakpoints does not stop
the animation.

While the “Animate” button adds no functionality to the environment that could not be
duplicated with a sturdy right pinky, we have noticed in ourselves and our users a quali-
tative difference between just watching a program execute and having to intervene at
every step. The user need no longer pay a‘tention to when the program has stopped in
order to issue the next command, and Is instead free to concentrate on the program.
This “program as movie" style of debugging has proved particularly useful for uncover-
ing control bugs, especially those introduced by data parallel control constructs where
the then and else parts of a conditional can both execute on disjoint sets of processors.

4. History

Shortly after adding program animation we began to experiment with recording historical
information. Our two inspirations were the desire to improve on debugging print state-
ments by flexibly displaying and juxtaposing variables and the need to provide a tool for
analyzing the processor utilization profile of programs. These seemingly disparate ap-
plications are both time varying, and our solution takes advantage of that fact to prasent
and single, simple view of all historical data.

Our design uses a logic analyzer or oscilloscope metaphor, two instruments which solve
the “juxtaposition of values over time" problem. The history window (see figure 3) con-
tains @ number of “traces”, which are arranged along the top of the window, while time
occupies the vartical axis. The quanta of time, one instance of the program stopping, is
markead along the left edge by a tick mark. Pressing and dragging one of these ticks
changes the magnification of time. A vurtical scrol! bar provides motion through timo.

Variable traces are added 1o the history view by copying it from the sourco code or an
inspactor and pasting It into the view. igure 4a shows a textual trace of a vanable,
which displays the value of the vanable in a box proporional in size to amount of time



the variable still printed identically. If time has veen compressed enough so that the
printable representation no longer fits ir the box, the printing is omitted, with the closely
spaced gray lines indicating rapid change (iigure 4b). Figure 4c is a graphical trace,
where the user can set the bounds of the graph by dragging the limit axes horizontally.
A final vanable trace we have experimented with is the boolean trace, where the user
can type a simple expression on the variable and the trace turns gray where the expres-
sion is true (figure 4d).

Program variables are not the only values to vary over time. We have also added a pro-
cessot utilization trace which displays a histogram of the number of processors active,
and a clock trace which shows the curient usage of CPU tima down to ten miliisecond
increments (figure 5). The latter makes apparent aromolies in the amount of time nec-
essary to execute iterations of a loop. Other treces display the available heap and stack
space, which are useful in finding memory leaks and otherwise analyzing the memory
allocation behavior of a program.

The history view has a powerful synergisiic effact with program animation. While ani-
mating it is not always possible to keep track cf saveral variable values at once if they
are in separate windows, but the history view makes their connection obvious. Also, a
slip in concentration may cause a user to miss an important event in an execution, while
the history view nerserves the information. Animation seives the history view by making
it easy for tho user to collect long traces without uiser intervention.

5. Scenario

We will demonstrate animation and history with two examples: one showing how history
can help the user discover datz -oriented bugs and the sacond showing how it helps in
tuning data parallel programs.

5.1 Wrong comparison operator

A common novice mistake in C is using the wrong comparison operator in a looping
construct. The following program writes off the end of an array, mistakenly modifying
the value of the outer loop variable while calculating the inner loop.

int 3§;

float alhY];
int 1,

al0] - 1.1414H9;
for (j - 0; )« 100; jer)
tor (10 1, 0 e Y L)
ali] - ali- 1] % 3.14159;



Figure 6 is a trace of i, j, and a[5] gathered by animating “step™. The trace clearly shows
that j does not advance beyond zero until its value is modified by the last iteration of the
innier loop.

5.2 Processor utilization

Figure 7a is a trace of a benchmark program recently coded for a potential customer. |t
shows that all processors are not being used all the time. With the informatior. in this
trace the programmer was able to modify the program to produce the trace in figure 7b,
which acheived an aggregate 25% speedup over the earlier version.

6. Conclusion

We were pleased with the simplicity and flexibility of our program animation facility. At a
cost of one additional button in the user interface the user is able to watch “interesting”
points of a program by a straightforward extension of familiar execution control com-
mands. Program animation increases the illusion that the hardware is really a Fortran
machine or C machine, and increases the user's undersianding of the behavior of a pro-
gram in those languages.

By adding history recording we were able to eliminate one of the remaining excuses for
putting recompilation in the debugging cycle. In addition, enline history has many ad-
vantages over the teletype version: more time can be viewed with the continuous pan
and zoom features, the data can be viewed in more formats, and important derived data
such as the percentage of active processcrs can still easily be juxtaposed with variable
values. History and animation also have a synergistic effect, each supporting and mak-
ing the other more useful, without introducing new complexities.

In the future we want to explore the use of language expressions entered at run time as
the source of data for traces. We would also like to find ways of effectively making trac-
es of aggregate data, such as large arrays. Finally, a simple extension of history makes
it possible for the user to select a tick mark and see the corresponding source line.

Animation and history are a powerful combination in promoting the understanding o!
complex programs. We have shown how both facilities can be added at minimal cost to
the user's tnodel of the progrumming environment, and how the two facilities can work
together to provide value beyond the sum of their individual contributions.
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Figure 1: The MasPar Programming Environment Debugger
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1. Imntroduction

Traditionally, most debuggers have been designed using a monolithic architecture, where all of the
debugger functionality is contained within a single binary and a single process. While this model was sufficient
for simplc tasks, more complex debugging tasks involving multiple processes ami remote execution are not well
supporicd.  Furthermore, very linle dexibility is available for providing different user interfaces and for user
extensions.

The CodeV'ision™ Debugger! architecture 1s based upon a client-server model. A central Process Control
Server provides high level control and access features for debugging. while muktiple client views communicate
v ith the server and present daia to the user. This archiecture enables the debugger 1o support such features as
muluple user interface presentations. muluprocess debuging. remote debugging. conference debugging, and
user-customizable views

3. A Dributed Architecture

In the CodeVision Debugrer. the ur interfuace components funcuon as clients to a shared ~erver called
the Process Control Server. Communicaton 15 achicved through a specialized protocol, the Process Conirol
Protocol, built on op of TCP. The protovol handies synchronous and asynchronous requests as well as asyn.
chronous cvents. Chients may make high kevel debuggir @ requests such as a request 1o “single step process t™.
The Process Cantrol Server responds W0 requests (aither synchronously or asynchronously) and sendx out events
ol inwiest a< they ogeur, such as “process ¢ has stopped at lacation

T Process Control Server 1s capable of managing muluple provesses and mulupk client views simul-
uncowsly. A central event loop dispalches evenis as they amve asynchronously either through the /proc debug -
ging interface (for areet process state changes) or through a client connecuon. As a single Process Control
Server controls all the processes being debugged on a given host, it is capable of synchronizing eventx for mul-
upravess debugging  Thus, it may handle actions that affect all processes in a multiprocess group such as exphi-
it pracess control or traps which stop all processes in the group.

On the chient uide, views present a user intertace lor the debugging (eatures available through the Proce sy
Control Server. The user interface may be as simple as o dba-hike imwerface implemented in & single view which
communicates directly wath the Process Comrol Server, of as complew as @ graphical intertace with muluple
vicw s implemented in muluple processes  Specialzed views may be wnilien as separaie prvesses, so that they
e onbanvhed whea peaded  Foe example, inth CodeVineen Debupeer, views for machine Level debuging
are an ashitterent process trom the mooee gencralls s cd views

Camb \pangs v gt glemark od Sibooe Grgphiy e
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The distributed architecture of the Code\'ision Debugger provides several unique features. As mentioned
before, a high degree of flexibility is available in the uscr interface, allowing different interfaces to be built on
o of the underlying Process Conirol Server as well as interfaces consisting of multiple processes. Further-
more, this model directly supports the ability for end users 1o construct their own user interface components,
tailored for their panticular debugging scenarios. The client-server approach also provides the capability for
remowe debugging (where views run on a different machine the server and larget process) and conference
debuggping (where two different users may examine the same tar,  aultaneously at different worksiations).

). Multiprocess Debugging

The distribuied nature of the CodeVision Debugger is especially useful for supponting multiprocess debug-
ging. Traditionally, debuggers originally designed for single process applications have been exiended to support
muliiple processes. In such cases, the handling of multiple processes is ofien clumsy. requiring the user to
swilkch a single view of the targel between Lhe various processes.

By supporting multiple views based on the clicni-server anproach, the CodeVision Debugger allows the
user 1o choose between switching existing views o different processes or, aliernatively, bringing up separate
vicws for the processes nf interest. Additionally, a specialized view, the Mudtiprocess View, displays the current
status of cach process in the group being debugged. updating the data dynamically as siate changes occur.

4. Conclusions

By scparating the internal debugger functionality from the user interface components, a great deal of flexi-
bilaty is gained for user interface design. muliiprocess supnort, and user customization. Distributed, client-server
maodels for computing have become mon: common ax faster workstations are built. We behieve that this iechnol-
ogy can also be ublized effecuvely in debugper architectures.
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Current Technology

Monolithic debugger process

Single threaded

Entire debugger on same host as target
Minimal support for customization

. Cumbersome multiprocess model
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A Distributed Architecture
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Process Control Server (PCS)
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Process Control

Stack frame construction
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Symbol management
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Process Control Protocol (PCP)

Communication between PCS and Views
Operates on reliable byte stream (TCP/UDS)
Provides high level abstraction

Views
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Display different "views" into process

Different views for different tasks
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Advantages of Distribution (1),.

>
Remote debugging

Supports more complex user interface

Multiple independent views for multiprocess
debugging

Coordination of muitiple target processes
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‘Advantages of Distribution (2)

Ehdeusér customizable user intertace
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- Challenges

Performance
Protocol requests
Memory usage
Optimizing request granularity
Avoiding synchronous requests

Appropriate distribution level
Communication between views
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Race conditions
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Design of a Debugger for a Heterogeneous
Distributed System

Arjun Khanna
Experimental Systems Lab
MCC, Austin, Texas

1.0 Introduction

This paper describes the design of DESK, a debug-
ger for a distributed, object-oriented, heteroge-
neous operating system being designed as part of
the Experimental Systems Project (ESP) at MCC.
Some of the: problems of debugging in the ESP en-
vironment are discussed. Requirements for sym-
bolic debugging in a distributed environment are
developed and a framework for accommodating
heterogeneity in a transparent manner is present-
ed. The research described in this paper builds on
earlier work done by Hahn on the requiremnents for
a debugger for ES-Kit[1).

A brief review of the ESP environment follows in
Section 2. Section 3 develops the motivation for this
work. In Section 4 we specify the basic framework
of the debugger. Contributions of this research are
listed in Section 5. Finally, Section 6 concludes the

paper by proposing some extensions to ongoing re-
search.

2.0 The ESP Environment

The ESP environment is a distributed heteroge-
neous system that encapsulates an object-oriented
paradigm toward application programming. Cur-
rently, it supports the C++ programming language.
Several ESP applications have been successfully
demonstrated on a network consisting of Sun3,
Sparc, Motorola 88000 based ES-Kit application ac-
celcrator, and most recently the Motorola Dclta
hardware.

The ESP environment consists of a minimal kernel,
a copy of which resides on each node of the distrib-
uled system, and operating system fadilities encap-
sulated as a set of Public Service Objects that are
linked to the kermnel on a demand basis. The kemel

facilitates context switching, exception handling,
message passing, and lazy evaluation of return val-
ues allowing concurrent execution of objects. Ap-
plication level objects are distributed across the
network and communicate solely through messag-
es.

3.0 Motivation for this Work

Two significant concerns provide the motivation
for this work. They are: 1)The need for a distribut-
ed object-oriented debugger and 2)Designing a de-
bugger that will opers in a heterogeneous
environment. A brief discussion of these two re-
quirements follows:

* Distributed Object-Oriented Debugger. It is
possible to use a sequential debugger like gdb
(dbx with extensions to support C++) to debug
the ESP kernel under UNIX. But gdb is not ob-
ject-oricrtcd in the same paradigm as ESP. For
example, in gdb breakpoints may be set only on
a class basis. The inability to set breakpoints on
a per instance basis is a severe limitation in an
environment where potentially a large numoer
of instances share class code and breakpoints
nced to be set only in a subset of the instanc-
es{1). Moreover, gdb does not offer features
such as replay. distributed bre.kpoints, mes-
sage logging etc., that are essential for distribut-
ed debugging.

¢ HeterogeneityConcerns. The requirement of
accommodating several heterogencous plat-
forms in ESP has made us lcok afresh at several
basicissues Namcly:

- Defining the minimal funclionality required of
a distributed debugger.



- Evaluating the pros and cons of an approach
in which various components of the debugger
are dynamically configured vis-a-vis being stat-
ically linked into a large monolithic program.

- Specifying the interfaces between the various
components of the debugger. A significant de-
sign concern is identifying the level at which ex-
ception handling, symbol tble formats and
architectural dependencles should be encapsu-
lated in order not to compromise the extenasibili-
ty and portability of the debugger.

- Identifying the functionality in a distributed
debugger that should be centralized vis-a-vis
being distributed.

4.0 Partitioning the Debugger

We propose splitting the debugger into the follow-
ing components based on the functionality that is
critical for a distributed debugger targeter to a het-
erogeneous environment.

¢ Front end. The front end offers a user friendly,
architecture independent view of the distribut-
ed system.

e Symbol manager. The symbol manager handles
functionality which is difficult to distribute. The
main task of the symbol manager is to manage
type and symbol table information. Additional-
ly, the symbol manager tracks the nodes on
which an application is distributed.

e Debugger Public Service Object (DPSO). The
DPSO is an object that provides the interface be-
tween the symbol manager and the back end.
One of the main tasks assigned to the DPSO is
to translate commands from the symbol munag-
er to simple back end routines to access applica-
tion memory. Instruction decoding and
machine dependent stack frame manipulation
are encapsulated in this layer.

An instance of a DPSO would be necessary on
esch node of a distributed system that needs to
Le drbugged (this is obvious since the DPSO
provides the necensary interface to access mem-
ory on a given node). Thus the DPSO forms the
distributed component of the debugger. Global
halting, distributed breakpoints etc., are some
of the concerns that may be appropriately han-
dled by this layer.

¢ The back end. The major concerns at this level
are: 1)Breakpoint management. This includes
setting and swapping breakpoints as well as
maintaining breakpoint tables. 2) Interfacing
with the DPSO to read/write memory and set
breakpoints. Processor level functionality, such
as reading/writing to control registers is han-
dled by the exception handling facility provid-
ed by the ESP kernel.
It should be noted that the machine dependent
portions of the debuzger are restricted to the
DPSO and the exception handling facilities
available as part of the ESP kernel.

5.0 Contributions of this
Research

While some work exists on the ts for a
symbolic debugger for C++, DESK proposes solu-
tions for several concerns typical of a heteroge-
neous, distributed C++ environment. These
incdude:

¢ Techniqucs to handle per instance breakpoints
as well as the ability to set breakpoints in the
corstructor for an instance (a constructor is func-
tion call to create a new instance of a class). In-
serting breakpoints in constructors s
complicated since the ESP kernel uses run time
heuristics to allocate objects on the nodes of a
distributed system. Thus, there is no apriori
knowledge of the fact where an instance will be
constructed.

o Perhaps the most significant contribution of this
research is to be the spevification of
the interfaces between the various components
of the debugger in a machine independent man-
ner. For example, the interface between the
DPSO and the symbol manager is independent
of the machine type for which the DPSO has
been compiled. Similarly, the symbol manager
is targeted to work with several object file for-
mats (for e.g. a.out, COFF, ELF, etc.). The philos-
ophy of scparation of mechanism (i.e,, object file
format and technique of loading) from policy (it
should be possible to add symbol tables dynam-
ically) has a distinct advantage over a monolith-
ic dcbugger that must be rewritten each time
the object file format is changed.



e Finally, DESK is not statically linked into the
ESP kernel. Instead it is dynzmically confignred
when a user wishes 10 debug an application.
For each network node used by an application,
the symbol manager uses configuration infor-
mation to match the node address with a prop-
erty list associated with that node (processor
type is one of the properties). Based on this in-
formation, the symbol manager is able to start
the appropriate DI’SO on each node being used
by an application.

6.0 Conciusions

In this paper we have described the design of a de-

bugger for a heterogeneous, distributed object-ori-

ented environment. We have made a case for:

¢ Designing an extensible debugger with a mini-
mal core. Additional functionality should be
configured to the core at run time.

¢ Defining clean interfaces between the vanous
layers of the debugger s as to minimize archi-
tectural and object file format dependencies in
the debugger.

¢ Incorporating relevant issues involved in the
design of a dcbugger for a distributed Co+ en-
vironment.
The philosophy of keeping the debugger 0, .m
e1.ded is significant. We ‘eel that features such
as replay, scheduling controi, and more ad-
vanced assertion checkers should be viewed as
handicrs that may be incrementally added to
DESK.

REFERENCES

(1!  Hahn, Douglas., “W ir the ES-Kit
Environment”, MCC Technical Report
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Current Debuggers (SRT)

Name Architecture Machine

DBX Scalar SPARC
CMDBX SIMD CM2
CDB MIMD Multimax
PASM SIMD DAP
DBG Vector Titan
DEBUG Scalar VAX




J

Present Debugging

 Most development time spent
debugging

e Software debugging tools follow
hardware development

e Lack of support for simultaneous
debugging of multiple processes

e Inability to specify array areas



Heterogeneous Debging Issues

e Official Standard
Dbx/gdb vs 22?2

e Architecture Transparency
Scalar vs vector vs SIMD vs MIMD

* Centralized Control
Central control of multiple threads over
heterogenous network

* Automated Verification
VMS vs UNIX, scalar vs parallel

e Graphical Representation
Large data sets and process execution, ie
CM2



Future of Heterogeneous Debugging

Parasight
* Real-time nonintrusive parallel debugging and profiling

e User controlled program instrumentation
* User corfigurable parasite processes
e Call tree analysis - ''paragraph'’
* Thread tracking scoreboard
e C and Fortran interpreters
* Dynamic cede recompilation and insertion
* X Window/Motif interface
* Program interface for custom parasite creation

Parallel Virtual Machine (PVM) /Heterogeneous Network
Computing Environment (HENCE)
* Heterogeneity and portability

* Tools for running, debugging, and analyzing programs
on heterogeneous network
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OVERVIEW OF DEBUGGERS USED BY SRT

Debugger: DBX
Architecture: Scalar
Machine: SPARC
Company: Sun
Languages: C, FORTRAN

DBX Is our standard scalar debugger. Its capabllities include setting
conditional breakpoints, single stepping code, viewing and changing the
values of variables, displaying variable type, and providing postmortem
dump analysis. It has window interfaces for running In X (xdbx) and
Sunview (dbxtool). Some of It's annoying features include the inability to
conveniently specify areas of arrays, and the requirement of using C like
syntax while debugging FORTRAN code.

Debugger: PASM (Program State Analysis Mode)

Architecture: SIMD

Machine: DAP

Company: Active Memory Technology

Languages: FORTRAN Plus Enhanced

Usage: Use -g complier option, and include a “Pause” statement.

PASM, which stands for Program State Analysis Mode, has been useable in
it's current form for about a year. It has the basic capability to examine
variables (including registers and stacks), single-step through program
code, set breakpoints, and resume execution. It uses its own unique
command syntax. It has an easy to use syntax for displaying portions of
mutlidimensional arrays, which is an Important feature for a SIMD
debugger. Some of the features the debugger lacks Iinclude the abllity to
change the value of varlables, trace procedure calls, and rerun code from
within the debugger.



Debugger: CcDB
Architecture: MIMD

Machine: MultiMax

Company: Encore Computer Corporation

Languages: C. FORTRAN, Encore Parallel FORTRAN (EPF)
Usage: Use -g compiler option

CDB is a standard Unix like debugger with some additional features for
handling multiple processes. It provides all of the functionality of dbx,
and even includes some identical commands, but in general has a unique
command syntax. The major enhancements for parallel debugging include
the ability to set both global and process specific breakpoints, and to send
commands (including those to continue running, single step, or print
variable values) to either single or muitiple processes.

Debugger: cvoBX

Architecture: SIMD

Machine: Connection Machine
Company: Thinking Machines
Languages: CM-FORTRAN

Usage: Use -g compiler option

CMDBX provides all of the functionality of dbx and also uses dbx syntax. It
has extended commands to allow the printing of array areas. These
extensions also apply to dbx expressions for example allowing like sized
areas of two different arrays to be muitiplyed together and displayed. One
nice feature of CMDBX is that it accepts a more FORTRAN like syntax for
example array references can be specified with parenthesis FORTRAN like
instead of needing to use C brackets.

The CM uses the standard dbx debugger with some custom extensions for
debugging C* code. The extensions mainly deal with defining “regions” of
processors to look at, and simplify printing the values of parallel
variables. When programming the CM in *L!SP the debugging environment
is integrated smaothly into the standard LISP debunging capabilities.



